

PRODUCTION SPECIFICATION OF LCD MODULE

MODULE NO.: XY150XGH11

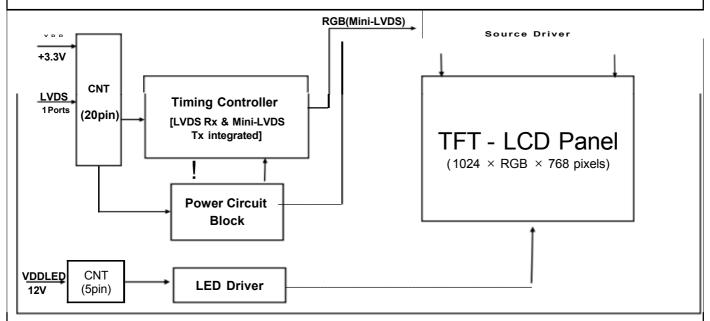
Customer Name:		
Customer Part Number:		
Approved By:	Date:	

Prepared By	Checked By	Approved By	

REVISION HISTORY

REV.	ECN No.	DESCRIPTION OF CHANGES	DATE	PREPARE D
P0	-	Initial Release	2020.03.05	
А	-	Correction of Some Parameters	2020.05.07	

Contents


No	ITEM	Page
	REVISIONS HISTORY	2
	CONTENTS	3
1	GENERAL DESCRIPTION	4
	1.1 Introduction	
	1.2 Features	
	1.3 Applications	
	1.4 General Specification	
2	ABSOLUTE MAXIMUM RATINGS	6
3	ELECTRICAL SPECIFICATIONS	7
	3.1 TFT LCD Open Cell	
	3.2 Backlight Unit	
4	INTERFACE CONNECTION	9
	4.1 Open Cell Input Signal & Power	
	4.2 LVDS Interface	
	4.3 LVDS Rx Interface Timing Parameter	
	4.4 LVDS Rx Interface Eye Diagram	
	4.5 LVDS Receiver Differential Input	
5	SIGNAL TIMING SPECIFICATIONS	14
	5.1 Timing Parameters (DE only mode)	
	5.2 Signal Timing Waveform	
	5.3 Input Signals, Basic Display Colors and Gray Scale of Colors	
	5.4 Power Sequence	
6	OPTICAL SPECIFICATIONS	19
7	MECHANICAL CHARACTERISTICS	21
8	RELIABILITY TEST	22
9	PRODCUT SERIAL NUMBER	23
10	PACKING INFORMATION	23
11	PRECAUTIONS	25
12	APPENDIX	30

1.0 GENERAL DESCRIPTION

1.1 Introduction

DV150X0M-N11 is a color active matrix TFT LCD MDL using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This MDL has a 15 inch diagonally measured active area with XGA resolutions (1024 horizontal by 768 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD MDL panel is adapted for a low reflection and higher color type.

Module No.: XY150XGH11

1.2 Features

- LVDS interface with 1 pixel / clock
- High-speed response
- Low color shift image quality
- ●6-bit +FRC color depth, display 16.7M colors
- Wide viewing angle
- DE (Data Enable) only mode
- ADS technology is applied for high display quality
- RoHS compliant

1.3 Application

- Commercial Digital Display
- Display Terminals for Control System
- Landscape and Portrait Display (7*24 & Indoor lifetime of one year)

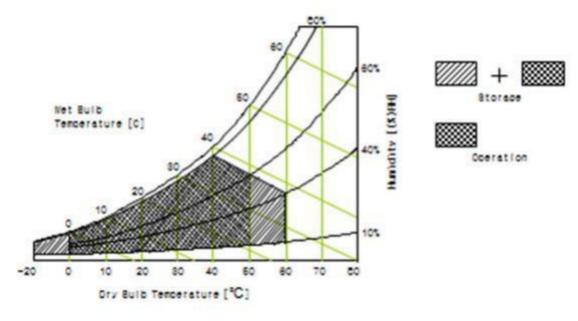
1.4 General Specification

< Table 1. General Specifications >

Parameter	Specification	Unit	Remarks
Active area	304.128(H) × 228.096(V)	mm	
Number ofpixels	1024(H) ×768(V)	pixels	
Pixel pitch	0.099(H) ×0.297(V)	mm	
Pixel arrangement	Pixels RGB Vertical stripe		
Display colors	16.7M	colors	6bits+FRC
Display mode	Normally Black		
Dimensional outline	$326.5(H) \times 253.5(V) \times 9.7(Total)$	mm	Detail refer to drawing
Weight	930	g	
Power Consumption	1.5	Watt	Тур.
Bezel width (L/R/U/D)	10/10/11.7/11.7	mm	
Surface Treatment	Haze 25%, 3H		
Back-light	E-LED Light bar Type		
LED life	50000		
Display Direction	landscape & Portrait		

Module No.: XY150XGH11

2.0 ABSOLUTE MAXIMUM RATINGS


The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Open Cell Electrical Specifications >

[VSS=GND=0V]

Parameter	Symbol	Min.	Max.	Unit	Remark
Power Supply Voltage	VDD	-0.3	4	V	Ta = 25 ℃
Operating Temperature	T _{OP}	-20	+70	$^{\circ}$	
Storago Tomporaturo	T _{SUR}	-20	+70	$^{\circ}$	
Storage Temperature	T _{ST}	-20	+70	${\mathbb C}$	Note 1
Operating Ambient Humidity	Нор	10	90	%RH	11010 1
Storage Humidity	Hst	10	90	%RH	

Note 1 : Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 $^{\circ}$ C max. and no condensation of water.

3.0 ELECTRICAL SPECIFICATIONS

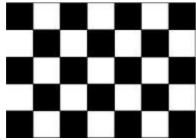
3.1 TFT LCD Open Cell

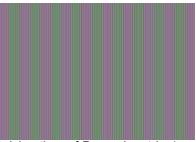
< Table 3. Open Cell Electrical Specifications >

[Ta =25±2 ℃]

Module No.: XY150XGH11

		Symbol		Values	i	Unit	Domork
		Symbol	Min	Тур	Max	Ulill	Remark
Power Supply Input Voltage		VDD	3.0	3.3	3.6	\	Note 1
Power Supp	ly Current	IDD	_	410	740	mA	Note i
Power Supp	ly Ripple Voltage	VRP	_	_	300	mV	
Rush Currer	nt	IRUSH	-	2	3	Α	Note 2
	Differential Input High Threshold Voltage	VLVTH	-	-	+100	mV	\/I\/\(\C=4.2\/
LVDS Interface	Differential Input Low Threshold Voltage	VLVTL	-100	-	-	mV	VLVC=1.2V
	Common Input Voltage	VLVC	0.7	_	1.6	>	
CMOS	Input High Threshold Voltage	VIH	0.7VDD	-	VDD	V	
Interface	Input Low Threshold Voltage	VIL	0	-	0.3VDD	V	
Power Consumption		PD		0.8	1.3	W	
		PBL		7.92	8.71		Note 3
		Ptotal		8.72	10.1		


Note 1: The supply voltage is measured and specified at the interface connector of LCM.


The current draw and power consumption specified is for VDD=3.3V,

Test Pattern of power supply current

a) Typ: Mosaic 7X5 (L0/L255)

b) Max: Vline Subline (L255))

Note 2: The duration of rush current is about 2ms and rising time of Power Input is 1ms(min)

Note 3 : Calculated value for reference (Input pins*VPIN \times IPIN) excluding inverter loss.

3.0 ELECTRICAL SPECIFICATIONS

3.2 Backlight Unit

< Table 4. Backlight Unit Electrical Specifications >

[Ta =25±2 ℃]

Module No.: XY150XGH11

						[Ia =25±2 C	
Parameter			Min.	Тур.	Max.	Unit	Remarks
LED Driver Voltage	Power Supply	H _{VDD}	10.8	12	12.6	V	
	Power Supply irrent	I _{HVDD}	650	800	900	mA	
EN Control	Backlight on	V _{ENH}	3	3.3	3.6	V	EN logic high v oltage
Level	Backlight off	V _{ENL}	0	0	0.6	V	EN logic low vol tage
PWM	PWM High Level	V _{PML}	3	3.3	3.6	V	
Control Level	PWM Low Level	V _{PML}	0	0	0.6	V	
PWM Contro	l Frequency	F _{PWM}	0.12	_	1	KHz	
Duty Ratio		-	5	_	100	%	
LED Life-Time		N/A	50,000	_	_	Hour	Note4
LED Light Bar Input Voltage Per Input Pin		VPIN	32.4	36	39.6	V	
LED Light Bar Input Current Per Input Pin		IPIN	-	55	-	mA	Note2
LED Power Co	nsumption	PBL	-	7.92	8.71	W	Note3

LED bar consists of 48LED packages,4 strings(parallel)*12packages(serial)

Note1: There are one light bar ,and the specified current is input LED chip 100% duty current

Note2: The sense current of each input pin is 55mA

Note3: PBL=4 Input pins*VPIN ×IPIN

Note4: The lifetime is determined as the time at which luminance of LED become 50% of the initial brightness or not normal lighting at IPIN=55mA on condition of continuous operating at

25 ±**2** ℃

4.0 INTERFACE CONNECTION

- 4.1 Open Cell Input Signal & Power
 - LVDS Connector: MSB240420HEA or Compatible.

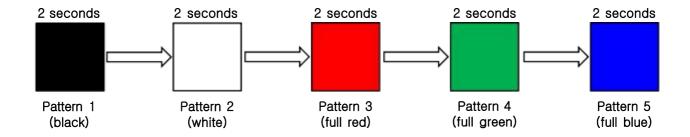
< Table 4. Open Cell Input Connector Pin Configuration >

Pin No	Symbol	Description	Pin No	Symbol	Description
	Cy201			Cy	-
1	VDD	Power Supply, 3.3V(typ.)	11	RIN2-	-LVDS differential data input 2
2	VDD	Power Supply,3.3V(typ.)	12	RIN2+	+LVDS differential data input 2
3	VSS	Ground	13	VSS	Ground
4	NC	No Connection	14	CLKIN-	-LVDS differential clock input CL K
5	RIN0-	-LVDS differential data input 0	15	CLKIN+	+LVDS differential clock input CL K
6	RIN0+	+LVDS differential data input 0	16	VSS	Ground
7	VSS	Ground	17	RIN3-	-LVDS differential data input 3
8	RIN1-	-LVDS differential data input 1	18	RIN3+	+LVDS differential data input 3
9	RIN1+	+LVDS differential data input 1	19	VSS	Ground
10	VSS	Ground	20	NC	No Connection

4.2 LED Light Bar

-LED connector: CI4205M1HR0-NH (瀚荃) or Compatible

< Table 5. LED Light Bar>


Pin No	Symbol	Description		
1	NC	No Connection		
2	Dimming	PWM Dimming		
3	Enable	3.3V-On / 0V-Off		
4	GND	Ground		
5	VCC	12V		

Module No.: XY150XGH11

Notes: 1. NC(Not Connected): This pins are only used for BOE internal operations.

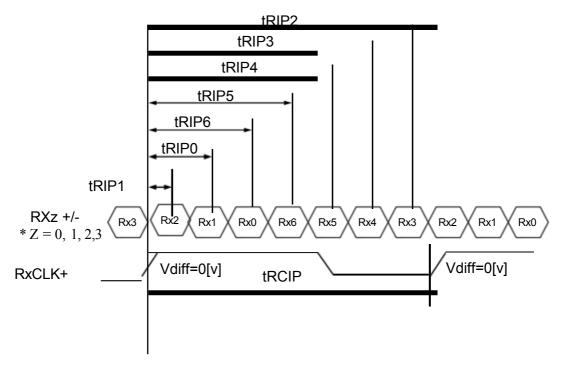
2. Input Level of LVDS signal is based on the EIA-644 Standard.

BIST Pattern

4.2 LVDS Interface

- LVDS Receiver : Timing Controller (LVDS Rx merged) / LVDS Data : Pixel Data < Table 6. Open Cell Input Connector Pin Configuration >

	Input	Trans	mitter	Inter	face	HT236F01-100 (CN11)	Remark
	Signal	Pin No.	Pin No.	System (Tx)	TFT-LCD (Rx)	Pin No.	
	OR0	51					
	OR1	52					
	OR2	54	40				
	OR3	55	48 47	OUT0- OUT0+	RXO0- RXO0+	1 2	
	OR4	56] 7/	0010+	KAO0+	2	
	OR5	3					
	OG0	4					
	OG1	6					
	OG2	7		OUT1- OUT1+	RXO1- RXO1+	3 4	
	OG3	11	46 45				
	OG4	12					
	OG5	14				4	
	OB0	15					
	OB1	19					
L	OB2	20		OUT2-	RXO2- RXO2+		
V D	OB3	22				5 6	
S	OB4	23					
	OB5	24	42 41				
	Hsync	27	41	OUT2+			
	Vsync	28					
	DE	30					
	MCLK	31	40 39	CLK OUT- CLK OUT+	RXO CLK- RXO CLK+	8 9	
	OR6	50					
	OR7	2]				
	OG6	8]		RXO3-	, .	
	OG7	10	38 37	OUT3-	RXO3+	10 11	
	OB6	16	3/	OUT3+		11	
	OB7	18					
	RSVD	25					


Module No.: XY150XGH11

4.3 LVDS Rx Interface Timing Parameter

The specification of the LVDS Rx interface timing parameter is shown in Table 6.

<Table 7. LVDS Rx Interface Timing Specification>

Item	Symbol	Min	Тур	Max	Unit	Remark
CLKIN Period	tRCIP	10.31	13.47	15.87	nsec	
Input Data 0	tRIP1	0.5 ×tRCIP/7-0.4	0.5 ×tRCIP/7	0.5 ×tRCIP/7 +0.4	nsec	
Input Data 1	tRIP0	1.5 ×tRCIP/7 -0.4	1.5 ×tRCIP/7	1.5 ×tRCIP/7 +0.4	nsec	
Input Data 2	tRIP6	2.5 ×tRCIP/7-0.4	2.5 ×tRCIP/7	2.5 ×tRCIP/7+0.4	nsec	
Input Data 3	tRIP5	3.5 ×tRCIP/7-0.4	3.5 ×tRCIP/7	3.5 ×tRCIP/7+0.4	nsec	
Input Data 4	tRIP4	4.5 ×tRCIP/7-0.4	4.5 ×tRCIP/7	4.5 ×tRCIP/7+0.4	nsec	
Input Data 5	tRIP3	5.5 ×tRCIP/7-0.4	5.5 ×tRCIP/7	5.5 ×tRCIP/7+0.4	nsec	
Input Data 6	tRIP2	6.5 ×tRCIP/7-0.4	6.5 ×tRCIP/7	6.5 ×tRCIP/7+0.4	nsec	

^{*} $Vdiff = (RXz+)-(RXz-), \dots, (RXCLK+)-(RXCLK-)$

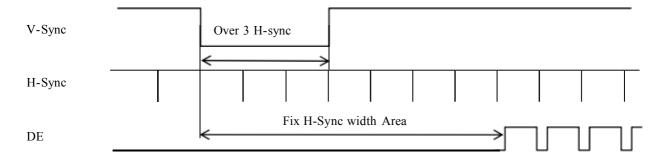
5.0 SIGNAL TIMING SPECIFICATION

5.1 Timing Parameters (DE only mode)

< Table 8. Timing Table >

Module No.: XY150XGH11

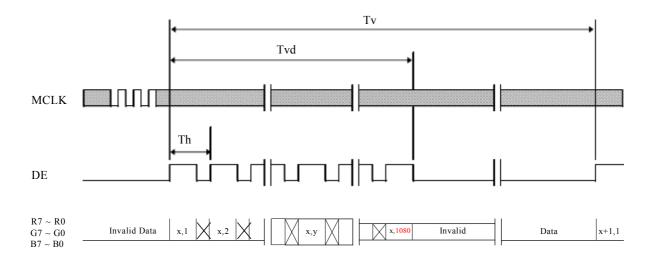
Item		Symbols		Min	Тур	Max	Unit
	Frequency	1/To	С	52	58	71	MHz
Clock	High Time	Tch	1	-	4/7Tc	-	
	Low Time	Tel		-	3/7Tc	-	
]	Frame Period			48	60	63	Hz
Ho	Horizontal Active		t _{HV}	-	1024	-	t _{CLK}
Display Term		Total	t _{HP}	1200	1344	1400	t _{CLK}
Vertical Active Display Term		Valid	t _{vv}	-	768	-	t _{HP}
		Total	t _{VP}	788	806	845	t _{HP}


Notes: This product is DE only mode. The input of Hsync & Vsync signal does not have an effect on normal operation.

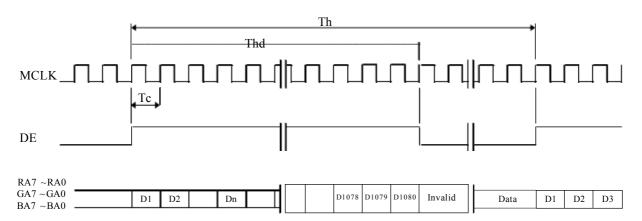
< Table 9. LVDS Input SSCG>

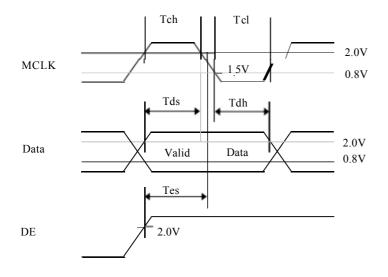
Symbol	Parameter	Condition	Min	Тур	Max	Unit
F	LVDS Input frequency	-	25	ı	100	MHz
T _{LVSK}	LVDS channel to channel skew	F=58MHz V_{IC} =1.2V V_{ID} = ± 200 mV	-600	-	+600	ps
F _{LVMOD}	Modulating frequency of input clock during SSC	F=58MHz	10	1	300	KHz
F _{LVDEV}	Maximum deviation of input clock frequency during SSC	$V_{IC} = 1.2V$ $V_{ID} = \pm 200 \text{mV}$	-3		+3	%
T _{CY-CY}	Cycle to Cycle jitter		-	-	200	ps

5.2 Signal Timing Waveform


5.2.1 Sync Timing Waveform

Module No.: XY150XGH11


- 1) Need over 3 H-sync during V-Sync Low
- 2) Fix H-Sync width from V-Sync falling edge to first rising edge


5.2.2 Vertical Timing Waveform

Module No.: XY150XGH11

5.2.3 Horizontal Timing Waveform

5.3 Input Signals, Basic Display Colors and Gray Scale of Colors

< Table 10. Input Signal and Display Color Table >

		Input Data Signal																							
Color & G	ray Scale			R	ed	Da	ta					Gr	eer	ı D	ata					В	lue	Da	ıta		
		R7	R6					R1	R0	G7	G6						G0	B7	B6					B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Δ					<u> </u>								<u> </u>								↑			
of Red	∇					l								<u> </u>								<u> </u>			
	Brighter	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	∇	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
of Green	Δ					<u> </u>				<u> </u>						<u> </u>									
01 010011	∇					<u> </u>							,	<u> </u>								<u> </u>			
	Brighter	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	∇	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\triangle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	<u> </u>					<u> </u>								<u> </u>								<u> </u>			
of Blue	∇	<u> </u>		_	,								,	ļ				_				<u> </u>			
	Brighter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	∇	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	_1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0		0		0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Gray Scale	<u>Darker</u>	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
△		-												<u> </u>								<u> </u>			
OI VVIIILE	Driebter	1				ļ		<u> </u>					,	↓				<u> </u>	l .			 			_
	Brighter	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	_1_	0	1
	∇	1	1	1	1	1	1	1	0	1	1_	1	1	1	1	1	0	1	1	1	1	1	_1_	1	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

5.4 Power Sequence

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below

Module No.: XY150XGH11

< Table 11. Sequence Table >

Davamatar		Values							
Parameter	Min	Тур	Max	Units					
T1	0.5	_	10	ms					
T2	0	_	50	ms					
T3	500	_	_	ms					
T4	500	_	_	ms					
T5	0	_	30	ms					
T6	1	_	_	S					

Notes: 1. Back Light must be turn on after power for logic and interface signal are valid.

- 2. Even though T1 is out of SPEC, it is still ok if the inrush current of VDD is below the limit.
- 3. When VDD<0.9VDD(Typ.), Power off.
- 4. T7 decreases smoothly, if there were rebounding voltage, it must smaller than 0.5 volts.

6.0 OPTICAL SPECIFICATIONS

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature= $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and PR788) and test unit shall be located at an approximate distance 180cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta_{\varnothing=0}$ (= θ_3) as the 3 o'clock direction (the "right"), $\theta_{\varnothing=90}$ (= θ_{12}) as the 12 o'clock direction ("upward"), $\theta_{\varnothing=180}$ (= θ_9) as the 9 o'clock direction ("left") and $\theta_{\varnothing=270}$ (= θ_6) as the 6 o'clock direction ("bottom"). While scanning θ and/or \varnothing , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 12.0V at 25°C. Optimum viewing angle direction is 6 'clock.

< Table 12. Optical Table >

[VDD = 5.0V, Frame rate = 60Hz, Ta =25 \pm 2 °C]

Parameter		Symbol	Condition	Min	Тур	Max	Unit	Remark	
	Horizontal	Θ_3		85	89		Deg.		
Viewing	Honzoniai	Θ9	CR > 10	85	89		Deg.	Note 1	
Angle	Vertical	Θ12	CR > 10	85	89		Deg.	Note	
	VEITICAI	Θ6		85	89		Deg.		
Brightne	ess	Lv	Θ = 0°	315	350		nit		
Uniformity	9 Points	ΔΥ9	ILED=55m A	75%	80%			Note 2	
Contrast	ratio	CR	⊙ = 0°	700:1	1000:1	1		Note 3	
	White	Wx			0.313	TYP. + 0.03			
	VVIIILE	Wy			0.329				
	Red Green	Rx			0.649				
Reproduction		Ry	⊙ = 0°	TYP.	0.338				
of color		Gx	(Center) Normal	- 0.03	0.323			Note 4	
	Green	Gy	Viewing		0.627				
	Blue	Вх	Angle		0.155				
	Diue	Ву			0.056				
Col	or Gamut			67	72	-	%		
Response Time Tr+Tf		·Tf		-	30	35	ms	Note 5	
Gamma Scale				2.0	2.2	2.4			

Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
- 2. The White luminance uniformity on LCD surface is then expressed as : ΔY =Minimum Luminance of 9 points / Maximum Luminance of 9 points.(see Figure 1 shown in Appendix).

Module No.: XY150XGH11

3. Contrast measurements shall be made at viewing angle of θ = 0。 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See Figure 2 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

- 4. The color chromaticity coordinates specified in Table 9.shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel. The BLU is used by BOE.
- 5. Response time Tg is the average time required for display transition by switching the input signal as below table and is based on Frame rate fV =60Hz to optimize.

 Each time in below table is defined as Figure 3 and shall be measured by switching the

6. Definition of Transmittance (T%):

Module is with white(L255) signal input

Transmittance = Luminance of LCD Module

Luminance of BLU × 100 %

7.0 MECHANICAL CHARACTERISTICS

7.1 Dimensional Requirements

Figure 3(located in Appendix) shows mechanical outlines for the model DV150X0M-N11 . Other parameters are shown in Table 13.

Module No.: XY150XGH11

< Table 13. Dimensional Parameters >

Parameter	Specification	Unit
Dimensional outline	$326.5(H) \times 253.5(V) \times 9.7(D)$	mm
Weight	930	gram
Active area	304.128(H) × 228.096(V)	mm
Pixel pitch	0.099(H) ×0.297(V)	mm
Number ofpixels	$1024(H) \times 768(V) $ (1 pixel = R + G + B dots)	pixels

7.2 Mounting

See FIGURE 5. (shown in Appendix)

7.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

8.0 RELIABILITY TEST

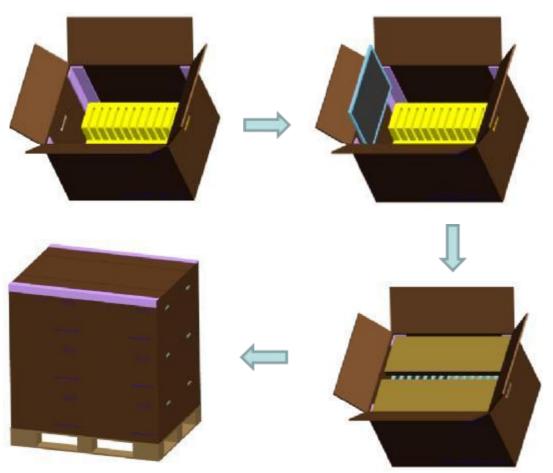
The Reliability test items and its conditions are shown in below.

< Table 14. Reliability Test Parameters >

Module No.: XY150XGH11

No	Test Items	Conditions				
1	High temperature storage test	Ta = 70 ℃, 240 hrs				
2	Low temperature storage test	Ta = -20 ℃, 240 hrs				
3	High temperature & high humidity storage test	Ta = 40 ℃, 90%RH, 240hrs				
4	High temperature operation test	Ta = 70 ℃, 240 hrs				
5	Low temperature operation test	Ta = -20℃, 240hrs				
6	High temperature & high humidity operation test	Ta = 40 ℃, 95%RH, 240hrs				
7	Thermal shock	Ta =-20℃~60℃ , per 30min, 100cycle, Storage				
8	ESD	Contact ±8kv : Class B ; Air ± 14kv : Class B				
9	Packing VIB/Drop	1.20Grms, 1-200Hz, Random +Z 2hr/一侧固定式 跌落				

This test condition is based on BOE Model.


10.0 PACKING INFORMATION

BOE provides the standard shipping container for customers, unless customer specifies their packing information. The standard packing method and Barcode information are shown in below.

10.1 Packing Order

Put 1 EPE bottom into the inner box.

Put each module into a PE bag.
Insert **14** Pcs MDL into each box

- -Put the boxes on the Pallet 12boxes/Pallet:6boxes per layer, total 2 layers
- -Place paper corners and wrap film around the boxes
- -Pack with 4 packing belts

Put 1 EPE cover in and seal the box.

Module No.: XY150XGH11

10.2 Packing Note

- Box Dimension : 510mm(L)×399mm(W)×324mm(H)
- Package Quantity in one Box : 14pcs

11.0 PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD Module.

Module No.: XY150XGH11

11.1 Mounting Precautions

- Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- You must mount a module using specified mounting holes (Details refer to the drawings)
- You should consider the mounting structure so that uneven force (ex. Twisted stress, Concentrated stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- Do not apply mechanical stress or static pressure on module; Abnormal display cause by pressing some parts of module during assembly process, do not belong to product failure, the press should be agreed by two sides.
- Determine the optimum mounting angle, refer to the viewing angle range in the specification for each model.
- Do not apply mechanical stress or static pressure on module , and avoid impact, vibration and falling.
- Acetic acid type and chlorine type materials for the cover case are not desirable because
 the former generates corrosive gas of attacking the polarizer at high temperature and the
 latter causes circuit break by electro-chemical reaction.
- Protection film for polarizer on the module should be slowly peeled off before display.
- · Be careful to prevent water & chemicals contact the module surface.
- You should adopt radiation structure to satisfy the temperature specification.
- Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- When the surface becomes dusty, please wipe gently with absorbent cotton or other soft
 materials like chamois soaks with petroleum benzine. Normal-hexane & alcohol is
 recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use
 acetone, toluene, because they cause chemical damage to the polarizer.
- Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading..

 This module has its circuitry PCB's on the rear side and Driver IC, should be handled carefully in order not to be stressed.

Module No.: XY150XGH11

- Avoid impose stress on PCB and Driver IC during assembly process ,Do not drawing, bending, COF package & wire
- · Do not disassemble the module.

11.2 Operating Precautions

- Do not connector or disconnect the cable to/from the Module at the "Power On" Condition.
- When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost,the module would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- · Do not allow to adjust the adjustable resistance or switch
- The electrochemical reaction caused by DC voltage will lead to LCD module degradation, so DC drive should be avoided.
- The LCD modules use C-MOS drivers, so customers are recommended that any unused input terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground you body, work/assembly area, assembly equipment to protect against static electricity.
- Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged.
- Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- Design the length of cable to connect between the connector for back-light and the
 converter as shorter as possible and the shorter cable shall be connected directly, The long
 cable between back-light and Converter may cause the Luminance of LED to lower and
 need a higher startup voltage
- The cables should be as short as possible between System Board and PCB interface.
- Connectors are precision devices to transmit electrical signals, and operators should plug in parallel
- Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.

11.3 Electrostatic Discharge Precautions

- Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc.

Module No.: XY150XGH11

- Do not close to static electricity to avoid product damage.
- · Do not touch interface pin directly.

11.4 Precautions for Strong Light Exposure

• Do not leave the module operation or storage in Strong light . Strong light exposure causes degradation of polarizer and color filter.

11.5 Precautions for Storage

A. Atmosphere Requirement

ITEM	UNIT	MIN	MAX					
Storage Temperature	(°C)	5	40					
Storage Humidity	(%rH)	40	75					
Storage Life	6 months							
Storage Condition	 The storage room should be equipped with a dark and good ventilation facility. Prevent products from being exposed to the direct sunlight, moisture and water. The product need to keep away from organic solvent and corrosive gas. Be careful for condensation at sudden temperature change. Storage condition is guaranteed under packing conditions. 							

B. Package Requirement

- The product should be placed in a sealed polythene bag.
- Product Should be placed on the pallet, Which is away from the floor, Be cautions not to pile the product up.
- The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- As the original protective film, do not use the adhesive protective film to avoid change of Pol color and characteristic.

11.6 Precautions for protection film

• Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertical from panel surface, If possible, under ESD control device like ion blower, and the humidity of working room should be kept over 50%RH to reduce the risk of static charge.

Module No.: XY150XGH11

• People who peeled off the protection film should wear anti-static strap and grounded well.

11.7 Appropriate Condition for Commercial Display

-Generally large-sized LCD modules are designed for consumer applications . Accordingly, long-term display like in Commercial Display application, can cause uneven display including image sticking. To optimize module's lifetime and function, several operating usages are required.

1. Normal operating condition

Temperature: 20±15°C

Operating Ambient Humidity: $55 \pm 20\%$

Display pattern: dynamic pattern (Real display)

Well-ventilated place is recommended to set up Commercial Display system

- 2. Special operating condition
 - a. Ambient condition
 - Well-ventilated place is recommended to set up Commercial Display system.
 - b. Power and screen save
 - Periodical power-off or screen save is needed after long-term display.
 - c. As the low temperature, the response time is greatly delayed. As the high temperatures (higher than the operating temperature) the LCD module may turn black screen. The above phenomenon cannot explain the failure of the display. When the temperature returns to the normal operating temperature, the LCD module will return to normal display.
 - d. When expose to drastic fluctuation of temperature (hot to cold or cold to hot) ,the LCD module may be affected; Specifically, drastic temperature fluctuation from cold to hot ,produces dew on the LCD module 's surface which may affect the operation of the polarizer and LCD module e. Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged.

f. Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions such as high temperature, high humidity, high altitude, special display images, running time, long time operation, outdoor operation, etc. It is strongly recommended to contact BOE for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.

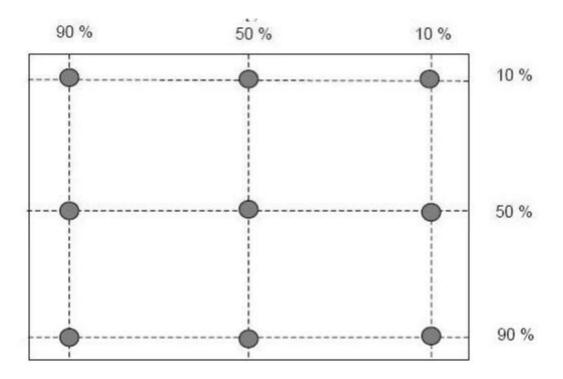
Module No.: XY150XGH11

- 3. Operating usages to protect against image sticking due to long-term static display.
 - a. Suitable operating time: under 20 hours a day.
 - b. Static information display recommended to use with moving image.
 - Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
 - c. Background and character (image) color change
 - Use different colors for background and character, respectively.
 - Change colors themselves periodically.
 - d. Avoid combination of background and character with large different luminance.
 - 1) Abnormal condition just means conditions except normal condition.
 - 2) Black image or moving image is strongly recommended as a screen save
- 4. Lifetime in this spec. is guaranteed only when Commercial Display is used according to operating usages.

11.8 Other Precautions

A. LC Leak

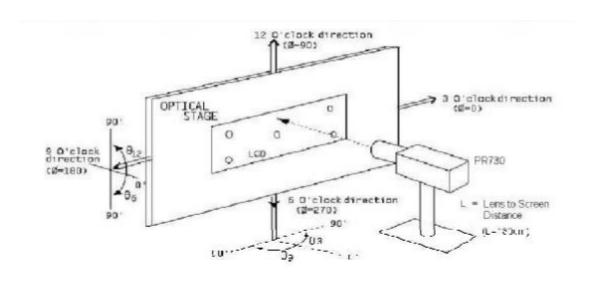
- If the liquid crystal material leaks from the panel, it is recommended to wash the LC with acetone or ethanol and then burn it.
- If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- If LC in mouth, mouth need to be washed, drink plenty of water to induce vomiting and follow medical advice.
- If LC touch eyes, eyes need to be washed with running water at least 15 minutes.


B. Rework

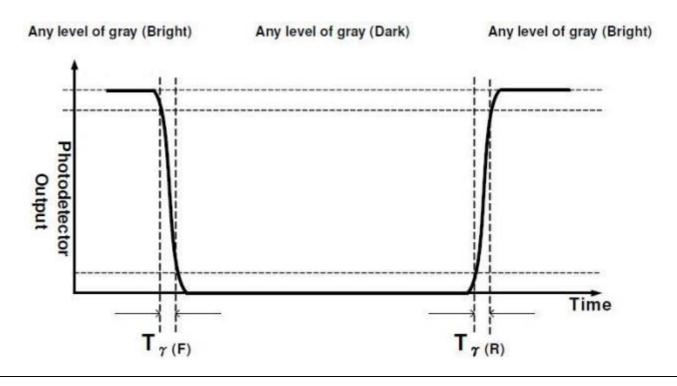
• When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.

12.0 APPENDIX

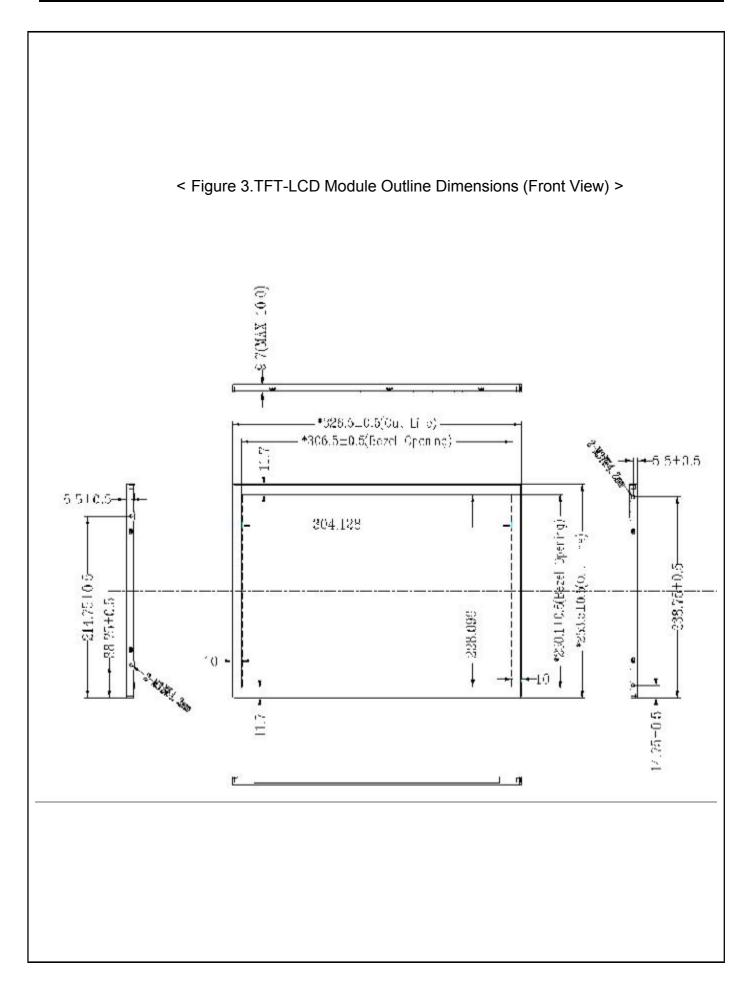
< Figure 1.Uniformity Measurement Locations (9 points)>


Module No.: XY150XGH11

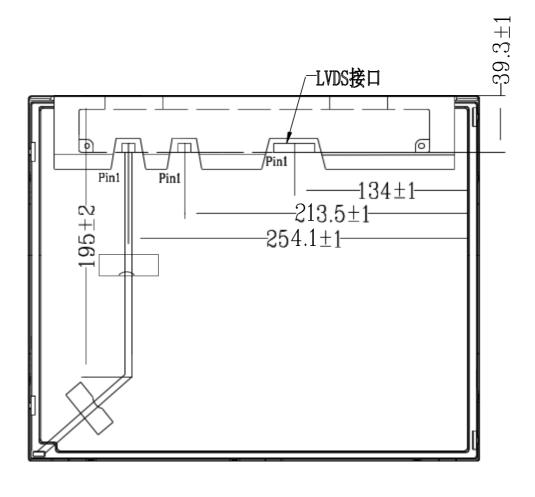
The White luminance uniformity on LCD surface is then expressed as : $\Delta Y9 = Minimum$ Luminance of five points / Maximum Luminance of 9 points



12.0 APPENDIX


< Figure 2. Measurement Set Up >

< Figure 3. Response Time Testing >



< Figure 4.TFT-LCD Module Outline Dimensions (Rear View) >

