USB2UIS 用户手册

版本: 8.0

发布: 3/20/2019

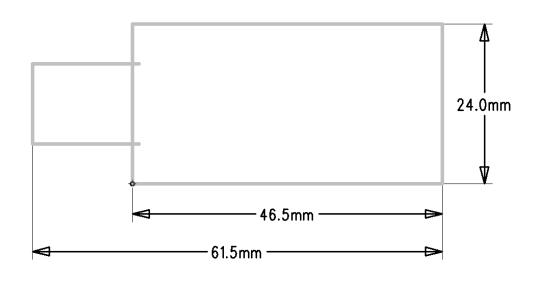
目录

USB2UIS 用户手册	1
一、 简介	3
二、 硬件系统	4
三、 附带文件说明	9
四、 驱动程序安装	10
4.1 安装 USB2ish 驱动	10
4.2 安装 USB 转 UART 驱动程序	12
五、 使用简介	14
5.1> UART 口使用	14
5.1.1> window 下使用 :	14
5.1.2> linux 下使用 :	15
5.2> I2c 使用	15
5.2.1> 选择设备	
5.2.2> 设置	
5.2.3> 操作选择	
5.2.4> 读写操作	
A. 立即读模式	
B. 复合读模式	
C. 写模式	
5.2.5> 特殊功能(分段写)	24
5.2.6>作为从设备使用(此功能只有扩展型才有)	
5.3> SPI 使用	
5.3.1> 作为主设备使用	
A. 设置	
B. 自检	
C. 操作选择	
D. 读写操作	
E. 特殊功能	
F. SPI flash 读写	
5.3.2> 作为从设备使用(此功能只有扩展型才有)	
5.4> GPIO 使用(此功能只有扩展型才有)	
5.4.1> 数字 IO 和 ADC 采样端接口定义	
5.4.2> ADC 使用说明	
5.4.2> 数字 IO 的使用	
5.4.3>PWM 使用	
5.5> 文件操作	
5.6> 弹出菜单	
5.7> <i>固件更新</i> 六、 LINUx 下使用 I2c,SPI 和 PWM 功能	
·	
. , = =	
八、 维护	44

一、简介

USB2UIS 是一款实用方便的多功能转换板,它集成了 USB 转 UART, USB 转 I2C, USB 转 SPI 接口,扩展型还附有 USB 转 ADC, USB 转 PWM, USB 转 GPIO 接口。通过上位机软件很方便地同带有 UART, I2C, SPI 等接口的设备通讯。

系统特征:


- 1> 可选的 3.3V 和 5V 输出电压。
- 2> 自恢复熔丝, 防止过流。
- 3> USB2.0 全速通讯速率。
- 4> 支持 I2c 设备地址自动侦测和 SPI 自检测试。
- 5> 提供 DLL 接口供第三方开发,附带 VB, VC, C#, labview, QT, c++builder 参考程序。
- 6> 唯一的设备序列号,可同时打开多个设备。
- 7> 支持 24,25 序列器件的读写。
- 8> 支持 Hex 扩展名文件的解码,以及文本和 16 进制混合编辑模式。
- 9> 支持 win XP 以上系统(32bit,64bit), 支持 linux 系统。
- 10> 可通过电脑 USB 线更新固件,软件升级,解决维护烦恼,对于特殊应用,还可定制。

电气特征:

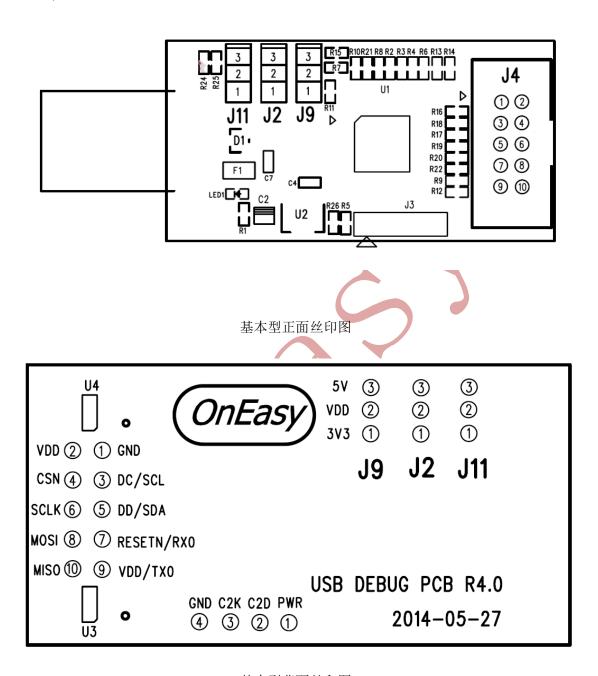
- 1> 所有的数字端口电压高电平在 2.7~3.6V,低电平在-0.3~0.3V。
- 2> 所有的数字端口最大驱动电流 10MA。
- 3> UART 波特率最大可达 230400。
- 4> I2C 有五档频率设置,分别是 100K,200K,300K,400K,800K。
- 5> SPI 波 特 率 最 大 可 设 置 12M , 有 九 档 设 置 , 分 别 是 200K,400K,600K,800K,1M,2M,4M,6M,12M。扩展型还支持带中断的读写,可工作在 从模式。
- 6> 扩展型带 10bit ADC 采样,四个通道可以配置为单端和差分输入。
- 7> 扩展型带 8个数字 IO 可任意配置的输入和输出,还有一个扩展 IO 输出和一个中断 IO 输入。
- 8> 扩展型带四路 PWM 同频输出,频率最大可达 100K 占空比任意可调。

二、 硬件系统

1> 外形尺寸:

2> 外貌,两种类型(基本型和扩展型)

图左是基本型转接板, 2.54mm 的间距的排针, 图右扩展型转接板, 是 2.0mm 间距的排

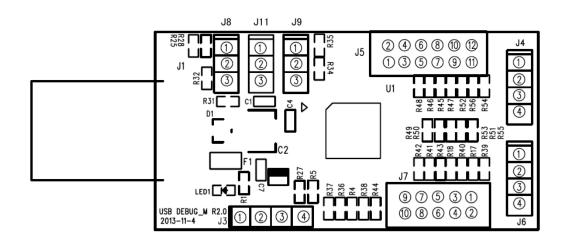


扩展型

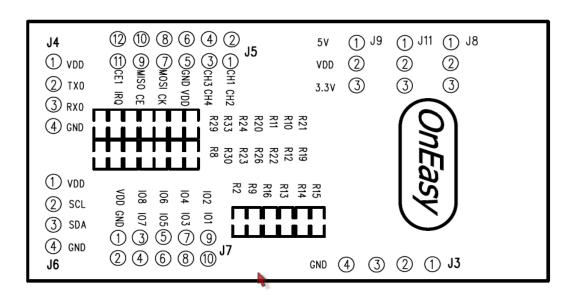
3> 接口布局位置及端口定义说明:

接口布局如下图:

1>基本型



基本型背面丝印图


基本型端口说明见下表:

接口编号	用途	备注
J4	供电	J4-1 GND J4-2 VDD(输出)
	I2C	J4-3 SCL J4-5 SDA
	SPI	J4-4 CSN J4-6 CLK
		J4-8 MOSI J4-10 MISO
	UART	J4-7 RX J4-9 TX
J2	功能选择跳线	1,2 短接,UART 功能允许;
		2,3 短接,I2C,SPI 功能允许
J9	电压选择跳线	1,2 短接,输出 VDD 为 3.3V;
		2,3 短接,输出 VDD 为 5V
J11	升级选择跳线	1,2 短接, 固件升级模式;
		2,3 短接, 由 J2 决定功能

2>扩展型

扩展型正面丝印图

扩展型端口说明见下表:

接口	功能			引脚	定义		
编号		引脚定义	丝印	软件功能	引脚定义	丝印	软件功能
J1	USB						
J3	未用						
J4	UART	J4-1	VDD	电源正	J4-2	TXD	发送端
		J4-3	RXD	接收端	J4-4	GND	电源地
J5	PWM	J5-1	CH2	二号通道	J5-2	CH1	一号通道
		J5-3	CH3	四号通道	J5-4	CH4	三号通道
	SPI	J5-5	VDD	电源正	J5-6	GND	电源地
		J5-7	CK	时钟端	J5-8	MOSI	主出从入端
		J5-9	CE	片选端	J5-10	MISO	主入从出端
		J5-11	IRQ	IO 中断端	J5-12	CE1	扩展片选
J6	I2C	J6-1	VDD	电源正	J6-2	SCL	时钟端
		J6-3	SDA	数据端	J6-4	GND	电源地
J7	GPIO	J7-1	VDD	电源正	J7-2	GND	电源地
		J7-3	108	Bit7	J7-4	107	Bit6
		J7-5	106	Bit5	J7-6	105	Bit4
		J7-7	104	Bit3	J7-8	103	Bit2
		J7-9	102	Bit1	J7-10	I01	Bit0
J8	功能选择	1,2 短接,UART 功能允许;					
	跳线	2,3 短接,IIC,SPI,GPIO 功能允许					
J9	电压选择	1,2 短接,输出 VDD 为 5V;					
	选择	2,3 短接,输出 VDD 为 3.3V					
J11	升级选择	1,2 短接,固件升级模式;					
	选择	2,3 短接,由	J8 决定	功能			

三、 附带文件说明

文件夹	内容	适用系统	用 途
APP	USB2ISH_R1_Setup.exe	Window 系统	Usb 转接板上位机安装程序
LIB	libUSB2UIS.so	Linux 64bit	Linux 下的库文件
	usb2uis.dll,usb2uis.lib	Window 系统	Window 下的库文件
	lib user manual.pdf	不限	库函数调用说明
	Usb2uis 转接板用户手	不限	操作说明书 (中文)
	册.pdf		
DRIVER	Ish	Window 系统	USB2ISH 设备驱动安装程序
	Uart	Window 系统	Usb2uart 设备驱动程序
DEMO	cbc2009	Window xp 系统	C++builder 下的参考代码,针对
			nRF2401 的读写参考程序
	Labview2012	Window 系统	Labivew 下的参考代码,含 i2c,spi,
		6/7	gpio 的读写控制
	Qt-creator301	Ubuntu14LTS 系统	linux 下的 Qt 参考代码, 含 i2c, spi,
			gpio,pwm 的读写控制
	VS2010/vc	Window 系统	VS2010 下的 VC 参考代码,含 i2c,
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		spi,gpio 的读写控制
	Vs2010/vb	Window 系统	VS2010 下的 VB 参考代码,含 SPI
			和 I2c 的读写控制
	Vs2010/C_sharp	Window 系统	VS2010 下的 C#参考代码,含 SPI 和
			I2c 的读写控制
OTHER	uartassist.rar	Window 系统	USB 转 UART 口测试程序

四、 驱动程序安装

下面讲述扩展型的转接板在 window7 上的驱动程序的安装步骤

4.1 安装 USB2ish 驱动

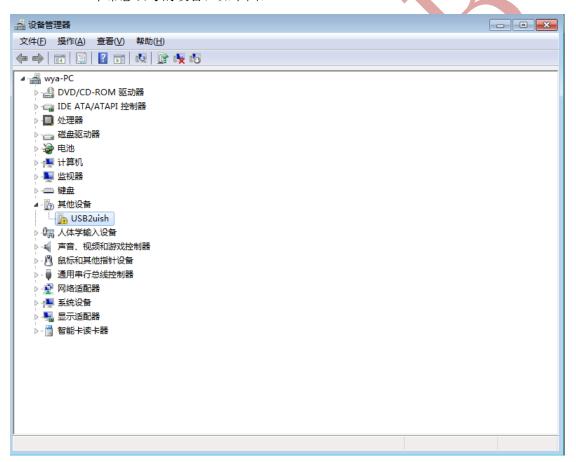
A> 压缩包解压后,进入 DRIVER\ish 目录可以看到两个文件如下图:

根据自己的 window 系统,如果是 32bit 系统,运行 USB2ISH_Driver_V100(32bit)_Setup.exe 执行安装,如果是 64bit 系统,运行 USB2ISH_Driver_V100(64bit)_Setup.exe 执行安装。

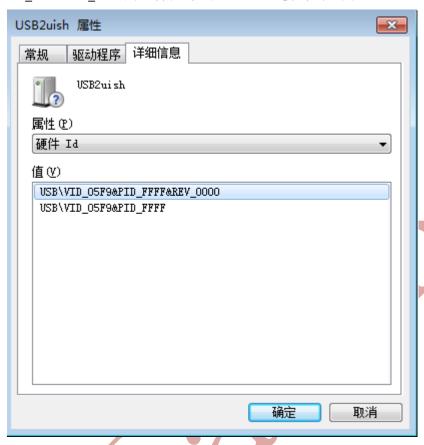
B> 安装完成后,插上转接板,在设备管理器下,在通用串行总线控制器下可以看到一个 USB2ish,如下图:

C> 右键选择属性,在设备属性驱动程序标签页,可以看到设备驱动安装信息和公司数字签 名的信息,如下图:

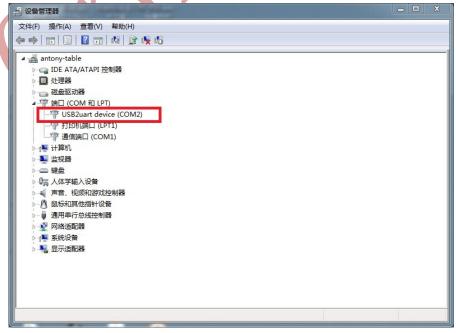
D> 在 USB2ish 设备属性详细信息标签页,可以看到设备唯一的序列标识号,如下图:


4.2 安装 USB 转 UART 驱动程序

说明:


- USB 转 UART 驱动需要手动安装,win10 的某些版本的电脑可以自动识别,无需安装。
- USB 转 UART 的驱动是 window 自带驱动程序 usbser.sys,本设备只提供 inf 和 cat 文件引导驱动的安装。
- 如果 window 缺失 usbser.sys 文件会导致驱动安装失败。

步骤:


A> 将转接板的功能选择跳线要改为 1-2 短接,插上转接板,会在设备管理器下看到一个带感叹号的设备,如下图:

B> 右键选择此设备属性,在详细信息页的硬件 ID 栏看到如下信息, VID 05F9&PID FFFF则证明跳线是在 usb2uart 模式,如下图:

C> 回到设备属性的驱动程序页面标签,点击更新驱动程序,要选择的驱动程序文件 在解压的目录 DRIVER\uart\(window 平台)\下对应的 usb2uart.inf。安装完成后, 打开系统属性->硬件->设备管理器,展开端口(COM 和 LPT)的三角符号,可以看到 在下面多了一个新的端口,如下图:

五、 使用简介

5.1> UART 口使用

确保功能选择跳线是 1-2 短接, 升级选择跳线 2-3 短接。

5.1.1> window 下使用:

5.1.2> linux 下使用:

插上设备,在控制台输入 Is /dev/ttyACM*,如果发现有新设备 ttyACM0~9 出现,则证明可以在 linux 下进行 com 通讯了。

5.2> I2c 使用

确保功能选择跳线和升级选择跳线都为 2-3 短接。打开软件 app/Usb2ish pro.exe,如下图:

此时设备还没有连接,插上 USB 转接板,点击下边的"连接设备"按钮,可以看到连接成功后窗口标题的变化,多了设备索引号和设备序列号,如下图:

继续点击版本信息按钮,可以看到各个软件的信息,如下图:

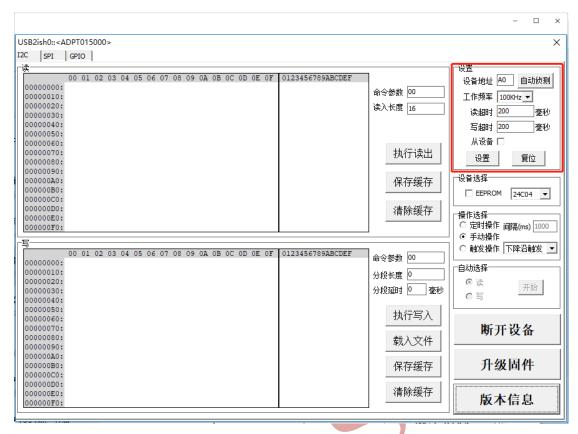
连接成功后,切换到 12c 页面,如下图


红色的区域是内容框,用于显示读写的数据,该框分为左右两部分,同步显示。左边是 hex 格式模式,右边是文本格式模式。

绿色的框为 hex 格式的输入框,用于填写 i2c 设备的命令参数或寄存器地址,可以为空,由读写的 i2c 设备决定。

蓝色的框用于填写数据长度,输入的是十进制的数字。

5.2.1> 选择设备


USB 转 I2C 默认的设备选择是 EEPROM, 如果读写的设备不是 EEPROM 时,则必须在设备选择项里去掉 EEPROM 前面的钩选。如下图:

5.2.2> 设置

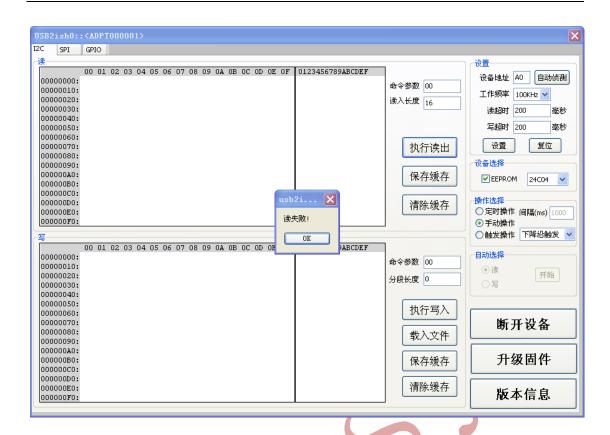
进行读写操作前先设置好 I2C 设备地址,通讯频率和读写超时参数,按设置按钮,直到弹出设置 OK 对话框证明设置成功。复位按钮恢复初始设置。如果不知道设备地址,可以点击自动侦测按钮,可以尝试找到连接的从设备地址,然后点击设置按钮,直到弹出设置 OK 对话框证明设置成功

如下图:

注意:

- 设备地址编辑框是 16 进制字符, 最多 2 个字符, 默认是 AO。
- 设备地址的放在 bit7~bit1, bit0 是读写 bit, 固定是 0。
- 设置地址设置成功后,只要不断电,读写时不用反复设置。
- 固件 15 版本,系列号 15000 以上的扩展型转接板新增 I2c 从模式功能。

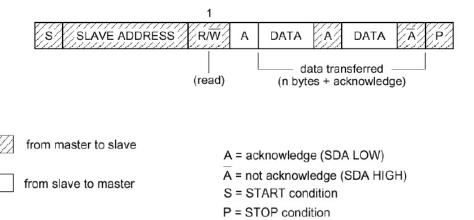
5.2.3> 操作选择


操作选择里头有三种操作模式可供选择:

定时操作: 每隔一定的时间进行一次读或写操作。

手动操作:必须点击执行读出或执行写入按钮进行一次操作。 触发操作:检测 IRQ 脚上的电平变化进行一次读或写操作。 无论是定时操作,触发还是手动操作,都只能是读或写操作。

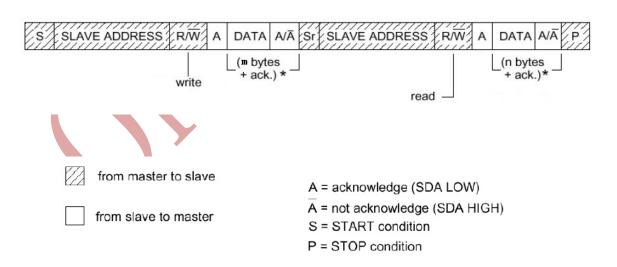
5.2.4> 读写操作


无论是读还是写,只要 I2c 读写失败,则会弹出读写失败对话框,成功则不会有任何提示。如下图:

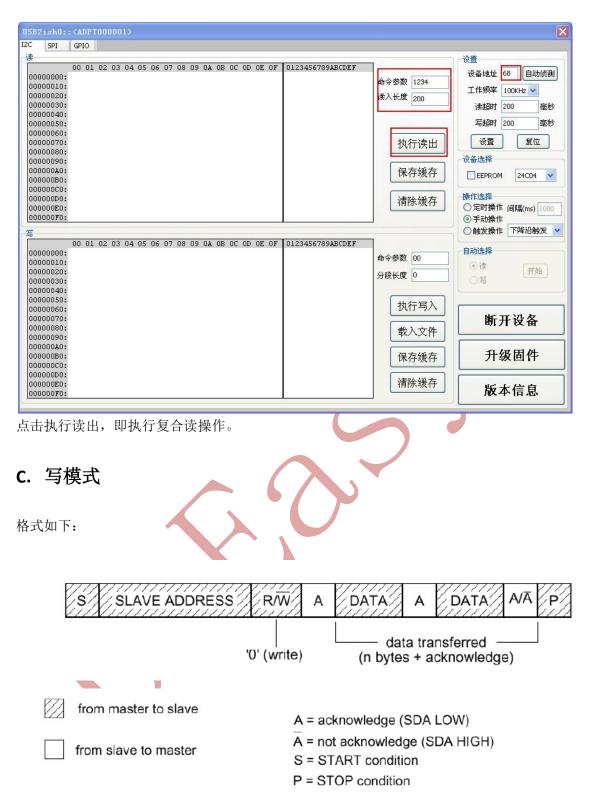

I2c 设备读写有三者种格式,具体使用哪种模式,由连接的 I2c 设备决定。分别论述如下:

A. 立即读模式

此种模式不常用,格式如下:



例如:设备地址是 0x68, n =16, 立即读 16 个 bytes,应先设置设备地址 68,点击设置按钮,接着在读入的数据长度填 16,命令参数不填,然后点击执行读出,如下图:



B. 复合读模式

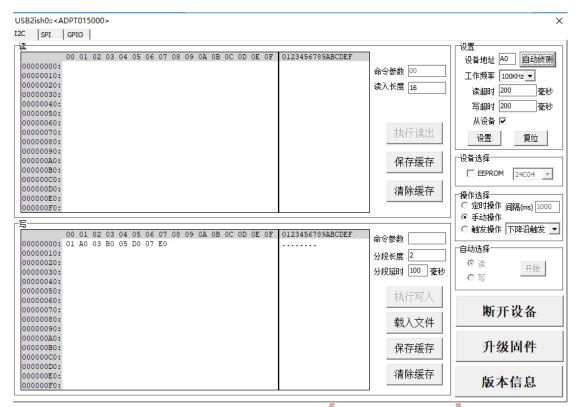
此种模式读用的最多,格式如下:

例如:设备地址是 0x68, m=2, n=200, m 区的 data 是 0x1234, 对应于命令参数,按下图设置:

例如: 向 0x1234 处写入 0x31, 0x32, 0x33, 0x34, 0x35, 按下图设置:

点击执行写入后都是一样的效果。

5.2.5> 特殊功能(分段写)


例如要向寄存器 0x01,0x03,0x05,0x07 分别写入数据 0xA0,0xB0,0xC0,0xD0,则可以用分段写功能,先设置分段写长度为 2,分段延时设置为 100ms,写命令参数空白,写区间配置如下图:

最后点击执行写入,则会按设置的长度分段写入,直到写完为止。

5.2.6>作为从设备使用(此功能只有扩展型才有)

勾选从设备,点击设置后, I2c 就进入了从模式,如下图:

使用方法参考 SPI 作为从设备使用。

作为从设备工作时,功能有如下限制:

- 1> 从设备只能接收数据。
- 2> 做从设备时,设置的设备地址就是该从设备的设备地址。
- 3> 主设备单次发送的数据包长度不能大于 128 BYTES。
- 4> 主设备发送的数据包间隔应该长于 5ms。

作为从设备时,接收的数据显示在读数据区域。

5.3> SPI 使用

确保功能跳线和升级跳线都为 2-3 短接。打开软件 usb2uis.exe.如果不是 SPI 页面,点击 SPI 标签,如下图



USB 转 SPI 既可以作为主设备使用,又可以作为从设备使用。默认是主设备。

5.3.1> 作为主设备使用

A. 设置

进行读写操作前先设置好 SPI 通讯频率和读写超时参数,按设置按钮,直到弹出设置 OK 对话框证明设置成功。复位按钮恢复初始设置。如下图:

SPI 模式说明:

模式 00: SCK 在空闲状态时处于低电平,在 SCK 周期的第一个边沿采样数据模式 01: SCK 在空闲状态时处于高电平,在 SCK 周期的第一个边沿采样数据模式 10: SCK 在空闲状态时处于低电平,在 SCK 周期的第二个边沿采样数据模式 11: SCK 在空闲状态时处于高电平,在 SCK 周期的第二个边沿采样数据 SPI 发送顺序:

MSB 优先发送

B. 自检

将 SPI 的 MISO 和 MOSI 短接在一起,勾选自检,如下图填入命令参数 12345678

然后点击执行读出,则会在内容框中显示读到的数据,跟命令框一致证明 SPI 功能正常,如下图

C. 操作选择

操作选择里头有三种操作模式可供选择:

定时操作: 每隔一定的时间进行一次读或写操作。

手动操作:必须点击执行读出或执行写入按钮进行一次操作。 触发操作:检测 IRQ 脚上的电平变化进行一次读或写操作。 无论是定时操作,触发还是手动操作,都只能是读或写操作。

D. 读写操作

SPI 读写也有三种格式:

1. 无命令参数的读模式

如下表:

ВУТЕ	First	Second	Third		Last
MOSI	0x00	0x00	0x00)	0x00
MISO	Data1	Data2	Data3		DataN
CSN	LOW			•	

如 N = 200,通过 SPI 读 200 个 byte,读区间配置如下图:

.然后点击执行读出。


2. 有命令参数的读模式

如下表:

BYTE	First	Second	Third	 Last
MOSI	COMMAND1	COMMAND2	0x00	 0x00
MISO	Don't care	Don't care	Data1	 DataN
CSN	LOW			

这儿 COMMNAD 最长可以是 4 个 byte。

如 command 是 0x1234, N = 100, 通过 SPI 读 100 个 byte, 读区间配置如下图:

然后点击执行读出。

3. 写模式

BYTE	First	Second	Third	 Last
MOSI	COMMAND1	COMMAND2	DATA1	 DATAN
MISO	Don't care	Don't care	Don't care	 Don't care
CE	LOW			

这个 COMMAND 最长可以是 4 个 byte。

如 command 是 0x1234, 写入的数据是 0x31, 0x32, 0x33, 0x34,0x35, 写区间配置如下图:

然后点击执行写入后都是一样的效果。

E. 特殊功能

如 I2c 写一样, SPI 写也有分段写功能,操作方式请参考 I2c 的分段写。

F. SPI flash 读写

对于 SPI flash 设备的读写,可以选择勾选 flash,设置好 flash 的参数后进行读写。 命令参数就是 SPI flash 的偏移地址。

5.3.2> 作为从设备使用(此功能只有扩展型才有)

要 SPI 工作为从设备,需要勾选从设备,并点击设置按钮,直到弹出设置 ok 对话框指示设置成功。如下图:

作为从设备工作时,功能有如下限制:

- 5> 从设备只能接收 MOSI 上的数据,MISO 上的数据不确定。
- 6> 主设备最大的时钟频率不能超过 4M。
- 7> 主设备单次发送的数据包长度不能大于 128 BYTES。
- 8> 主设备发送的数据包间隔应该长于 5ms。

作为从设备时,接收的数据显示在读数据区域。

5.4> GPIO 使用(此功能只有扩展型才有)

如 I2C 使用那样, 连接成功后,切换到 GPIO 页面,如下图:

此页面功能分为三个部分: ADC, 数字 IO 和 PWM, 如下图:

5.4.1> 数字 IO 和 ADC 采样端接口定义

标号	丝印	软件功能配置	功能说明
J7-1	VDD		电源正
J7-2	GND		电源地
J7-3	108	J7-03	ADC 采用通道或数字 IO
J7-4	107	J7-04	ADC 采用通道或数字 IO
J7-5	106	J7-05	ADC 采用通道或数字 IO
J7-6	105	J7-06	ADC 采用通道或数字 IO
J7-7	104	J7-07	ADC 采用通道或数字 IO
J7-8	103	J7-08	ADC 采用通道或数字 IO
J7-9	102	J7-09	ADC 采用通道或数字 IO
J7-10	101	J7-10	ADC 采用通道或数字 IO

5.4.2> ADC 使用说明

10位的分辨率,最大200 ksps采样频率,支持单端/差分输入。带有内部参考电压和一个温度传感器。J7-3和J7-10可以配置为任何通道的正极或负极输入。最多可以四个通道轮流采样。当**GND**被选择为负极输入时,**ADC**工作在单端方式;否则,**ADC**工作在差分方式

A、使用采样功能

勾选所用的ADC通道,选择每个通道的正负极输入选择,按设置按钮,知道弹出设置OK对话框,确认后ADC采样设置成功。

选择采样的操作模式(分为手动,定时和触发三种模式)后,按开始采样按钮,进行采样操作。触发模式和定时采样模式启动后,要停下的话需要再按开始采样按钮(此时的按钮标题已变成停止采样)。采样值按开启的通道顺序显示在数据框里头,而且可以文本文件的形式保存在指定的地方。

B、采样电压计算

定义Value 为采样读取的值, V_{REF} 为参考电压, 为2.44V, 则采样的电压值 V_S 计算如下:

单端方式 V_S= Value*V_{REF} /1023; (V_S 范围在0~ V_{REF}之间)

差分方式 V_S= Value*V_{REF} /511;(Value的高位Bit9~15全为0)

V_S= -(Value&0xFE)*V_{REF} /511;(Value的高位Bit9~15全为1)

C、内部温度传感器计算

Temp = $(V_S - 0.776)*1000/2.86$ 单位 ${}^{\circ}$ C

5.4.2> 数字 IO 的使用

当J7-03~J7-10不被用作ADC通道使用时,可以配置为数字IO使用。

- 1> 在数字IO配置栏目中勾选相应的IO口,则配置为输入,不勾选的配置为输出, 选择好后要按设置按钮使设置生效,弹出设置OK对话框后证明设置成功,相 应的数字IO读写栏目里头的电平会重新刷新一次。
- 2> 数字IO读写栏目里头的读出和写入按钮用于刷新或变更数字IO的端口电平。 配置为ADC采样选择的IO口不能配置为数字IO,相应数字IO配置栏里头的勾 选变为灰色。配置为ADC采样选择或配置为数字IO输入的IO口在数字IO读写 栏里头变为灰色,只能读出,不能写入。且配置为ADC采样选择的IO在读入 时其电平总是0.

5.4.3> PWM 使用

本设备最多可以输出四路,100K的PWM,每个PWM的输出频率都是一样的且同时开启和关闭。

占空比则可以单独调整。通道数为0是没有PWM输出,为1时一号通道输出,为2时,一二号通道输出,以此类推。

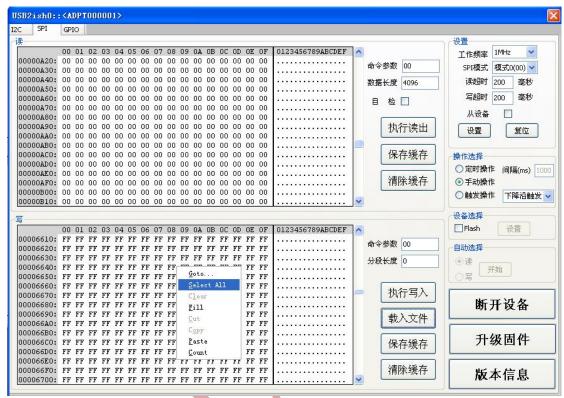
选择好通道数,频率和占空比后,按设置按钮,弹出设置OK对话框后证明设置成功。

由于软件的运行误差,最大占空比有一点点限制,跟PWM频率有一定的关系。 实测最大占空比见下表:

频率(KHz)	最小占空	最大占空比	占空比为0时输出	超过最大占
	比			空比时输出
1	0.1%	99.9%	高电平	低电平
2	0.1%	99.8%	高电平	低电平
4	0.1%	99.7%	高电平	低电平
6	0.1%	99.6%	高电平	低电平
8	0.1%	99.5%	高电平	低电平
10	0.1%	99.3%	高电平	低电平
20	0.1%	98.7%	高电平	低电平
40	0.1%	97.5%	高电平	低电平
60	0.1%	96.2%	高电平	低电平
80	0.1%	95.0%	高电平	低电平
100	0.1%	93.7%	高电平	低电平

5.5> 文件操作

在 I2c 和 SPI 标签页有载入文件和保存缓存实现文件的读和写。



载入文件:任何格式的文件都可以载入进来,只有扩展名为 hex 的文件会进行解码,其他格式的文件一律按文本文件的格式载入缓存,文件大小跟缓存数据长度一致。非显示字符在文本模式显示下'.'。在 hex 模式下显示其十六进制值。

保存缓存:将内容框里的数据按文本文件的格式保存在电脑中,文件大小跟缓存数据长度一 致。

5.6> 弹出菜单

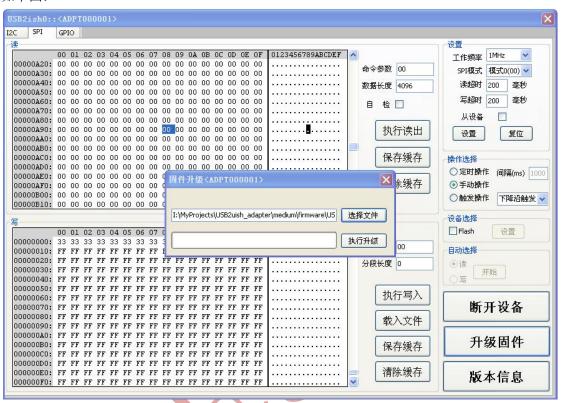
讲鼠标移动至在内容框范围内,点击鼠标右键,会弹出一个菜单见下图:

菜单说明:

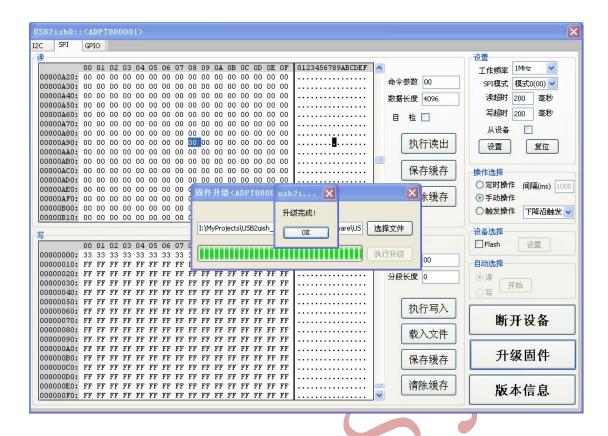
Goto...: 将编辑光标定位到所在偏移地址

Select All: 全选所有缓存内容

Clean: 将所选内容删除


Fill: 将某块区域内容全部改为相同的字节 Cut: 将所选内容删除,并 copy 到粘贴板

Copy: 将所选内容 copy 到粘贴板


Paste:将粘贴板内容插入到编辑光标所在位置 Count:统计内容框缓存的长度,单位是 byte

5.7> 固件更新

确保升级选择跳线为 1-2 短接,插入 USB2ish 设备,成功连接设备后,点击固件升级按钮,如下图:

点击选择文件后,再按执行,成功后如下图:

不同的软件有不同的版本和发行时间,更新成功后,将升级选择跳线改回 2-3 短接,插入 USB2ish 转接板,成功连接设备后点击版本信息,可以查看固件版本和发行时间,检测是否 更新成功。如下图:

版本如有变化,以实际使用为准。

六、 Linux 下使用 I2c,SPI 和 PWM 功能

- 1> 确保 linux 下已安装 libusb 软件包和 qt-creator。
- 2> 打开 linux 下的 terminal 软件,进入软件包的 lib/linux 目录.
- 3> 输入命令 sudo sh install.sh 安装库文件
- 4> 用 qt-creator 打开软件包 DEMO/qt-creator301/下的 I2c_RW.pro 或者 SPI_RW.pro 项目。
- 5> 编译运行即可进行 I2c 或 SPI 的读写操作。

七、 常见问题及解决方法

	故障现象	可能原因	解决方法
1	拔插 USB,设备管理器没有反应	PC USB 端口坏	更换至其他 USB 端口
		驱动程序僵死	重新启动电脑
		USB 转接板坏	更换转接板
2	读不到软件版本信息,如下图:很多问 号 设备信息	DLL 调用出错	退出应用程序,拔下板子,再 插上,重开应用程序
	版权所有: 安易博科技 技术支持: 18676786972(王生) 邮 箱: antony_wang72@163.com QQ: 494183004 类 別 版 本 发行日期 应用程序: USB2ISH_APP_M00.11 Aug 22 2016 16:07:18 动 态 库: USB2ISH_DLL_M00.10 Aug 22 2016 15:16:52 驱 动: SYS_???????? ??????????????????????????	驱动程序僵死	重新启动电脑
4	驱动程序安装失败	检测跳线,驱动文件 夹选择是否正确	
		360 杀毒软件	关闭 360 后再安装驱动
5	安装 UART 驱动失败问题,如下图: Windows 安装设备的驱动程序软件的遇到一个问题 Windows 已线到设备的驱动程序软件,但在试图安装它时遇到普湾。 USB2uart device 系统就不到描定的文件。 如果您知道设备物造商,则可以访问其网站并检查驱动程序软件约支持部分。		1> 网上下载相应系统版本的 mdmcpq.inf 和 usbser.sys到指定的文件 夹 2> 将:\Windows\inf\mdmcpq .inf 中 [FakeModemCopyFileSection] usbser.sys,,,0x20 改为 [FakeModemCopyFileSection]; usbser.sys,,,0x20

八、 维护

- 1> 一年的非人为硬件损坏,可以免费更换。
- 2> 终身包修,只需承担材料费和运费。
- 3> 特殊要求的可定制。

