

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

eMCP Datesheet

8GB eMMC + 8Gb (x32) LPDDR4 SDRAM

深圳市芯存科技有限公司

Tel: 0755-29708864 Technical support: fae@szxincun.com Website: www.szxincun.com

Copyright

© <u>2022</u> Xincun. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without written permission of Xincun.

Disclaimer

Xincun provides this document "as is", without warranty of any kind. Xincun may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

Trademarks

ChipSiP is a trademark of Xincun. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

Using This Document

This document is intended for hardware and software engineer's general information on the XCBL4NVAM-QSNTF. Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

Revision History

Revision	Date	Description
Rev 1.0	2022/02/18	Create new document
Rev 1.1	2023/05/20	Update logo

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Document Index

1.	INTROE	DUCTION	5				
	1.1	Application					
	1.2	Features	5				
2.	FUNCT	ION DIAGRAM	9				
	2.1	eMCP	9				
	2.2	LPDDR4 SDRAM Logic Block Diagram	10				
	2.3	eMMC	11				
3.	PIN CO	NFIGURATION	12				
	3.1	Pin Assignment	12				
	3.2	Pin Descriptions	13				
4.	LPDDR	4 SDRAM SPECIFICATION	15				
	4.1	Simplified Bus Interface State Diagram	15				
	4.2	General Description	17				
	4.3	MR0, MR[6:5], MR8, MR13, MR24 Definition					
	4.4	I _{DD} Specifications	19				
	4.5	Functional Description	21				
	4.6	Power-Up and Initialization	24				
	4.7	Power-Off Sequence	27				
	4.8	Mode Registers	28				
	4.9	Commands and Timing					
	4.10	ACTIVATE Command	52				
	4.11	Read and Write Access Modes	53				
	4.12	Preamble and Postamble	54				
	4.13	Burst READ Operation	57				
	4.14	Burst WRITE Operation	63				
	4.15	MASK WRITE Operation	68				
	4.16	Data Mask and Data Bus Inversion (DBI [DC]) Function	72				
	4.17	Preamble and Postamble Behavior	75				
	4.18	PRECHARGE Operation					
	4.19	Auto Precharge	90				
	4.20	REFRESH Command	96				
	4.21	Refresh Requirement					
	4.22	SELF REFRESH Operation					
	4.23	Power-Down Mode					
	4.24	Input Clock Stop and Frequency Change					
	4.25	MODE REGISTER READ Operation					

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

	(32M x 8-Bank x 32-bit (2 channels x 16 I/O))
MODE REGISTER WRITE	
V _{REF} Current Generator (VRCG)	
VREF Training	
Command Bus Training	
Write Leveling	
MULTIPURPOSE Operation	
Read DQ Calibration Training	
Write Training	
Thermal Offset	
Temperature Sensor	
ZQ Calibration	
Frequency Set Points	
Pull-Up and Pull-Down Characteristics and	Calibration172
DQ On-Die Termination	
Target Row Refresh Mode	
Post-Package Repair	
Read Preamble Training	
Electrical Specifications	
AC and DC Operating Conditions	
Output Slew Rate and Overshoot/Undersho	ot specifications194
LVSTL I/O System	
Input/Output Capacitance	
I_{DD} Specification Parameters and Test Cond	itions
AC Timing	
CA Rx Voltage and Timing	
DQ Tx Voltage and Timing	
DQ Rx Voltage and Timing	
Clock Period Jitter	
LPDDR4 1.10V VDDQ	
VREF Specifications	
Command Definitions and Timing Diagrams	
AC and DC Operating Conditions	
Output Slew Rate and Overshoot/Undersho	ot specifications257
LVSTL I/O System	
WRITE and MASKED WRITE Operation DQS	Control (WDQS Control)260
Technical Notes	
Register Value	
	MODE REGISTER WRITE. VREF Current Generator (VRCG). VREF Training. Command Bus Training Write Leveling. MULTIPURPOSE Operation. Read DQ Calibration Training. Write Training. Thermal Offset Temperature Sensor. ZQ Calibration Frequency Set Points. Pull-Up and Pull-Down Characteristics and DQ On-Die Termination Target Row Refresh Mode Post-Package Repair. Read Preamble Training. Electrical Specifications AC and DC Operating Conditions. Output Slew Rate and Overshoot/Undersho LVSTL I/O System Input/Output Capacitance Ipp Specification Parameters and Test Cond AC Timing CA Rx Voltage and Timing DQ Rx Voltage and Timing DQ Rx Voltage and Timing Clock Period Jitter LPDDR4 1.10V Vppq VREF Specifications AC and DC Operating Conditions Output Slew Rate and Overshoot/Undersho LVSTL I/O System Register Value.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN		UN
-----	--	----

6. 7.

5.3	AC Parameter	
5.4	DC Parameter	
5.5	Power Delivery And Capacitor Specifications	
PACK	AGE DIMENSION (254 Ball FBGA, 11.5x13x1.0mm)	
PART	NUMBER LOGIC	

XIN 🕸 CUN

1. INTRODUCTION

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XCBL4NVAM-QSNTF is a embedded Multi Chip Package Memory (eMCP) that integrated eMMC controller which combines 8GB NAND Flash and 8Gb LPDDR4 SDRAM by advanced SiP (System-in-a-Package) technology. XCBL4NVAM-QSNTF offers space saving advantage that could miniaturize your portable device, and it is conformed with Green regulations.

1.1 Application

- Compact DSC / CAR Black Box / Action Cam / 360 Cam
- Drone
- Wearable

1.2 Features

PRODUCT LIST

- XCBL4NVAM-QSNTF
 - eMMC: 8GB
 - LPDDR4 SDRAM: 8Gb (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

POWER SUPPLY

- eMMC
 - VCC: 3.3V (2.7-3.6V)
 - VCCQ: 3.3V (2.7-3.6V)
- LPDDR4 SDRAM
 - LDR4_V_{DD1}: 1.8V (1.7–1.95V)
- LDR4_V_{DD2}: 1.1V (1.06–1.17V)
- LDR4_V_{DDQ}: 1.1V (1.06–1.17V)

PACKAGE

- FBGA 11.5 x 13 x 1.0mm, 254 Balls
- Ball Pitch: 0.5mm
- Weight: TBD

Temperature

- Operating: -10 to +85°C
- Storage: -55 to +125°C

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

eMMC-Specific Features

- Supports features of eMMC5.1 which are defined in JEDEC Standard
 - Supported Features : Boot, RPMB, Write Protection, DDR, HS200, Multi-partitioning, Secure Erase/Trim, Trim, HPI, Background operation, Enhance Reliable Write, Discard, Sanitize, Security features, Partition types, Packed commands, Real time clock, Dynamic device capacity, Power off notification, Thermal spec,Cache, HS400, Field Firmware Update, Security Removal type, Device Health Report, Enhanced Strobe, Command Queuing, Secure Write protection
 - Non-supported Features : Large Sector Size (4KB)
- Full backward compatibility with previous eMMC 4.41/4.5/5.0 specification
- Programmable bus width : 1bit (Default), 4bit and 8bit Data bus.
- eMMC I/F Clock Frequency : 0 ~ 200MHz

eMMC I/F Boot Frequency : 0 ~ 52MHz

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

LPDDR4 SDRAM

- Ultra-low-voltage core and I/O power supplies
 - V_{DD1} = 1.70–1.95V; 1.80V nominal
- V_{DD2}/V_{DDQ} = 1.06–1.17V; 1.10V nominal
- Frequency range
 - 1600–10 MHz (data rate range: 3200–20 Mb/s/pin)
- 16n prefetch DDR architecture
- 8 internal banks per channel for concurrent operation
- Single-data-rate CMD/ADR entry
- Bidirectional/differential data strobe per byte lane
- Programmable READ and WRITE latencies (RL/WL)
- Programmable and on-the-fly burst lengths (BL =16, 32)
- Directed per-bank refresh for concurrent bank operationand ease of command scheduling
- Up to 8.5 GB/s per die
- On-chip temperature sensor to control self refresh rate
- Partial-array self refresh (PASR)
- Selectable output drive strength (DS)
- Clock-stop capability
- RoHS-compliant, "green" packaging
- Programmable V_{SS} (ODT) termination

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Device Addressing

Configu	iration	256M32 (8Gb)
Die per p	package	2
Device d	density (per die)	4Gb
Device d	density (per channel)	4Gb
Configur	ration	32Mb x 16 DQ x 8 banks x
Conligura		2channels x 1 rank
Number	of channels (per die)	1
Number	of ranks per channel	1
Number	of banks (per channel)	8
Array pre	efetch (bits) (per channel)	256
Number	of rows (per bank)	32,768
Number	of columns (fetch boundaries)	64
Page siz	ze (bytes)	2048
Channel	density (bits per channel)	4,294,967,296
Total der	nsity (bits per die)	4,294,967,296
Bank add	dress	BA[2:0]
×10	Row addresses	R[14:0]
X 10	Column addresses	C[9:0]
Burst sta	arting address boundary	64-bit

Notes:

1. The lower two column addresses (C0–C1) are assumed to be zero and are not transmitted on the CA bus.

2. Row and column address values on the CA bus that are not used for a particular density are "Don't Care."

3. For non-binary memory densities, only half of the row address space is valid. When the MSB address bit isHIGH, theMSB-1 address bit must be LOW.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

2. FUNCTION DIAGRAM

2.1 eMCP

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

2.2 LPDDR4 SDRAM Logic Block Diagram Functional Block Diagram (per die)

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

2.3 eMMC

Note:

1. V_{SS} and V_{SSQ} are internally connected.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

3. PIN CONFIGURATION

3.1 Pin Assignment

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A	DNU	DNU	LDR4_DQ00_A	LDR4_VDD1	LDR4_VDD2	LDR4_VDDQ	LDR4_VDDQ	LDR4_VDD2	LDR4_VDD1				LDR4_VDDQ	LDR4_VDDQ	LDR4_VDD1	LDR4_VDD1	DNU	DNU
в	DNU		LDR4_DQ01_A	LDR4_VSS	LDR4_VDDQ	LDR4_VSS	LDR4_DQ04_A	LDR4_VSS	LDR4_VDD2				LDR4_VDD2	LDR4_VDD2	LDR4_VDD1	LDR4_ZQ00		DNU
С			LDR4_DQ02_A	LDR4_VSS	LDR4_VSS	LDR4_DQ05_A	LDR4_VSS	LDR4_DQ07_A	LDR4_DQS00_t_ A				LDR4_CA02_A	LDR4_VSS	LDR4_CA05_A	NC/ LDR4_ZQ01		
D			LDR4_DQ03_A	LDR4_VSS	LDR4_DMI00_A	LDR4_VSS	LDR4_DQ06_A	LDR4_VSS	LDR4_DQS00_c_ A				LDR4_CA03_A	LDR4_VSS	LDR4_VSS	NC/ LDR4_ZQ02		
Е													LDR4_CA04_A	LDR4_VSS	LDR4_CS00_A	LDR4_CKE00_A		
F													LDR4_CA01_A	LDR4_VSS	NC/ LDR4_CS01_A	NC/ LDR4_CKE01_A		
G			LDR4_DQ13_A	LDR4_VSS	LDR4_VSS	LDR4_VSS	LDR4_VDD2	LDR4_VDD2	LDR4_VDD2				LDR4_VSS	LDR4_CA00_A	LDR4_VSS	LDR4_CLK_c_A		
н			LDR4_DMI01_A	LDR4_VSS	LDR4_VDDQ	LDR4_DQ14_A	LDR4_VSS	LDR4_DQ15_A	LDR4_VDDQ				LDR4_VSS	NC/ LDR4_CS02_A	LDR4_VSS	LDR4_CLK_t_A		
J			LDR4_DQ11_A	LDR4_VDDQ	LDR4_VDDQ	LDR4_VSS	LDR4_DQ12_A	LDR4_VDDQ	LDR4_DQS01_c_ A				LDR4_ODTCA_A	NC/ LDR4_CKE02_A	VCCQ	VCCQ	VCCQ	
к		LDR4_VDD2	LDR4_DQ10_A	LDR4_VSS	LDR4_DQ08_A	LDR4_DQ09_A	LDR4_VSS	LDR4_VSS	LDR4_DQS01_t_ A				EMMC_VSSm	EMMC_VSSm	VCCQ	EMMC_VSSm	NC	
L							LDR4_VDD2	LDR4_VDD2	LDR4_VDD2			EMMC_VSSm	EMMC_DAT7	EMMC_DAT6	EMMC_VSSm	EMMC_VSSm	VDDI_M	
М			VSF1	VSF3	VSF 5	VSF7	VS F 9	EMMC_VSSm	EMMC_C MD			EMMC_DS	EMMC_VSSm	EMMC_VSSm	EMMC_DAT1	EMMC_DAT4	VCC	
N			VSF2	VSF4	VSF 6	VSF8	NC	EMMC_VSSm	EMMC_RSTn			EMMC_VSSm	EMMC_DAT2	EMMC_DAT5	EMMC_VSSm	EMMC_VSSm		
Ρ							LDR4_VDD2	LDR4_VDD2	LDR4_VDD2			EMMC_CLK	EMMC_VSSm	EMMC_VSSm	EMMC_DAT3	EMMC_DAT0	vcc	
R		LDR4_VDD2	LDR4_DQ10_B	LDR4_VSS	LDR4_DQ08_B	LDR4_DQ09_B	LDR4_VSS	LDR4_VSS	LDR4_DQS01_t_ B				VCCQ	VCCQ	EMMC_VSSm	EMMC_VSSm	EMMC_VSSm	
т			LDR4_DQ11_B	LDR4_VDDQ	LDR4_VDDQ	LDR4_VSS	LDR4_DQ12_B	LDR4_VDDQ	LDR4_DQS01_c_ B				LDR4_ODTCA_B	NC/ LDR4_CKE02_B	VCCQ	VCCQ	NC	
U			LDR4_DMI01_B	LDR4_VSS	LDR4_VDDQ	LDR4_DQ14_B	LDR4_VSS	LDR4_DQ15_B	LDR4_VDDQ				LDR4_VSS	NC/ LDR4_CS02_B	LDR4_VSS	LDR4_CLK_t_B		
v			LDR4_DQ13_B	LDR4_VSS	LDR4_VSS	LDR4_VSS	LDR4_VDD2	LDR4_VDD2	LDR4_VDD2				LDR4_VSS	LDR4_CA00_B	LDR4_VSS	LDR4_CLK_c_B		
w													LDR4_CA01_B	LDR4_VSS	NC/ LDR4_CS01_B	NC/ LDR4_CKE01_B		
Y													LDR4_CA04_B	LDR4_VSS	LDR4_CS00_B	LDR4_CKE00_B		
AA			LDR4_DQ03_B	LDR4_VSS	LDR4_DMI00_B	LDR4_VSS	LDR4_DQ06_B	LDR4_VSS	LDR4_DQS00_c_ B				LDR4_CA03_B	LDR4_VSS	LDR4_VSS	LDR4_RESET_n		
AB			LDR4_DQ02_B	LDR4_VSS	LDR4_VSS	LDR4_DQ05_B	LDR4_VSS	LDR4_DQ07_B	LDR4_DQS00_t_ B				LDR4_CA02_B	LDR4_VSS	LDR4_CA05_B	NC		
AC	DNU		LDR4_DQ01_B	LDR4_VSS	LDR4_VDDQ	LDR4_VSS	LDR4_DQ04_B	LDR4_VSS	LDR4_VDD2				LDR4_VDD2	LDR4_VDD2	LDR4_VDD1	NC		DNU
AD	DNU	DNU	LDR4_DQ00_B	LDR4_VDD1	LDR4_VDD2	LDR4_VDDQ	LDR4_VDDQ	LDR4_VDD2	LDR4_VDD1				LDR4_VDDQ	LDR4_VDDQ	LDR4_VDD1	LDR4_VDD1	DNU	DNU

TOP VIEW

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

3.2 Pin Descriptions

Type Symbol	Description	Type Symbol	Description
I	Input	Р	Power
0	Output	G	Ground
I/O	Bi-direction	Х	No connect (No function, don't care)

Symbol	Туре	Count	Description
LDR4_CLK_t_A LDR4_CLK_c_A LDR4_CLK_t_B LDR4_CLK_c_B (CK, CK_t, CK_c)	I	4	Clock: CK_t and CK_c are differential clock inputs. All address, command and control input signals are sampled on positive edge of CK_t and the negative edge of CK_c. AC timings for CA parameters are referenced to clock. Each channel (A, B) has its own clock pair.
LDR4_CKE00_A LDR4_CKE00_B (CKE)	I	2	Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals,input buffers, and output drivers. Power-saving modes are entered and exited via CKEtransitions. CKE is sampled at the rising edge of CK.
LDR4_CS00_A LDR4_CS00_B (CS,CS_n)	I	2	Chip select: Each channel (A, B) has its own CS signals.
LDR4_CA[00:05]_A LDR4_CA[00:05]_B (CA)	I	12	Command/Address inputs: Provide the command and address inputs according to the command truth table. Each channel (A, B) has its own CA signals.
LDR4_ODTCA_A LDR4_ODTCA_B (ODT_CA)	I	2	CA ODT control: The ODT_CA pin is used in conjunction with the mode register to turn on/off the on-die termination for CA pins. It is bonded to V_{DD2} within the package, or at the package ball, for the terminating rank, and the non-terminating ranks are bonded to V_{SS} (or left floating with a weak pull-down on the DRAM die). The terminating rank is the DRAM that terminates the CA bus for all die on the same channel.
LDR4_DQ[0015]_A LDR4_DQ[0015]_B (DQ, DQs)	I/O	32	Data input/output: Bidirectional data bus.
LDR4_DQS[0001]_t_A LDR4_DQS[0001]_c_A LDR4_DQS[0001]_t_B LDR4_DQS[0001]_c_B (DQS, DQS_t, DQS_c)	I/O	8	Data strobe: DQS_t and DQS_c are bi-directional differential output clock signals used to strobe data during a READ or WRITE. The data strobe is generated by the DRAM for a READ and is edge-aligned with data. The data strobe is generated by the SoC memory controller for a WRITE and is trained to precede data. Each byte of data has a data strobe signal pair. Each channel (A, B) has its own DQS_t and DQS_c strobes.
LDR4_DMI[0001]_A LDR4_DMI[0001]_B (DMI)	I/O	4	Data mask/Data bus inversion: DMI is a dual use bi-directional signal used to indicate data to be masked, and data which is inverted on the bus. For data bus inversion(DBI), the DMI signal is driven HIGH when the data on the data bus is inverted, or driven LOW when the data is in its normal state. DBI can be disabled via a mode register setting. For data mask, the DMI signal is used in combination with the data lines to indicate data to be masked in a MASK WRITE command (see the Data Mask (DM) and Data Bus Inversion (DBI) sections for details). The data mask function can be disabled via a mode register setting. Each byte of data has a DMI signal. Each channel has its own DMI signals.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

LDR4_ZQ00 (ZQ)	Р	1	ZQ calibration reference: Used to calibrate the output drive strength and the termination resistance. The ZQ pin shall be connected to V_{DDQ} through a 240 Ω ±1% resistor.
LDR_Vdda, LDR4_Vdd1, LDR4_Vdd2 (Vdda, Vdd1, Vdd2)	Р	54	Power supplies: Isolated on the die for improved noise immunity.
LDR4_Vss (Vss)	G	54	Ground reference: Power supply ground reference.
LDR4_RESET_n (RESET, RESET_n)	-	1	RESET: When asserted LOW, the RESET pin resets all channels of the die.
DNU	Х	12	Do not use: Must be grounded or left floating.
NC	Х	24	No connect: Not internally connected.
EMMC_DAT[0007] DAT[7:0]	I/O	8	eMMC interface data bus
EMMC_CMD (CMD)	I	1	eMMC interface command line
EMMC_CLK (CLK)	I	1	eMMC interface clock line
EMMC_DS (DS)	Ι	1	eMMC interface data strobe
EMMC_RSTn (RSTn)	Ι	1	eMMC interface hardware reset
VCC	Р	3	eMMC Power Supply
VCCQ (VCCIO)	Р	8	eMMC Power Supply
VDDI_M (VDDIM)	Р	1	eMMC Power Supply
EMMC_VSSm (GNDIO, VSS, VSSQ)	G	18	Ground

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4. LPDDR4 SDRAM SPECIFICATION 4.1 Simplified Bus Interface State Diagram

The state diagram provides a simplified illustration of the bus interface, supported state transitions, and the commands that control them. For a complete description of device behavior, use the information provided in the state diagram with the truth tables and timing specifications. The truth tables describe device behavior and applicable restrictions when considering the actual state of all banks. For command descriptions, see theCommands and Timing section.

Simplified State Diagram

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. From the self refresh state, the device can enter power-down, MRR, MRW, or any of thetraining modes initiated with the MPC command. See the Self Refresh section.
- 2. All banks are precharged in the idle state.
- 3. In the case of using an MRW command to enter a training mode, the state machine willnot automatically return to the idle state at the conclusion of training. See the applicabletraining section for more information.
- 4. In the case of an MPC command to enter a training mode, the state machine may notautomatically return to the idle state at the conclusion of training. See the applicabletraining section for more information.
- 5. This diagram is intended to provide an overview of the possible state transitions and commands to control them; however, it does not contain the details necessary to operate device. In particular, situations involving more than one bank are not captured in complete detail.
- 6. States that have an "automatic return" and can be accessed from more than one priorstate (that is, MRW from either idle or active states) will return to the state where theywere initiated (that is, MRW from idle will return to idle).
- 7. The RESET pin can be asserted from any state and will cause the device to enter the resetstate. The diagram shows RESET applied from the power-on and idle states as an example, but this should not be construed as a restriction on RESET.
- 8. MRW commands from the active state cannot change operating parameters of the devicethat affect timing. Mode register fields which may be changed via MRW from theactive state include: MR1-OP[3:0], MR1-OP[7], MR3-OP[7:6], MR10-OP[7:0], MR11-OP[7:0], MR13-OP[5], MR15-OP[7:0], MR16-OP[7:0], MR17-OP[7:0], MR20-OP[7:0], and MR22-OP[4:0].

Simplified State Diagram

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.2 General Description

The 8Gb Mobile Low-Power DDR4 SDRAM is a high-speedCMOS, dynamic random-access memory. The device is internally configured with x16I/O, 8-banks (each channel).

Each channel of the x16's 1,073,741,824-bit banks is organized as 65,536 rows by 1024 columnsby 16 bits.

General Notes

Throughout the data sheet, figures and text refer to DQs as "DQ." DQ should be interpretedas any or all DQ collectively, unless specifically stated otherwise.

"DQS" and "CK" should be interpreted as DQS_t, DQS_c and CK_t, CK_c respectively,unless specifically stated otherwise. "CA" includes all CA pins used for a given density.

In timing diagrams, "CMD" is used as an indicator only. Actual signals occur on CA[5:0].VREF indicates VREF(CA) and VREF(DQ).

Complete functionality may be described throughout the entire document. Any page ordiagram may have been simplified to convey a topic and may not be inclusive of all requirements.

Any specific requirement takes precedence over a general statement.

Any functionality not specifically stated herein is considered undefined, illegal, is notsupported, and will result in unknown operation.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.3 MR0, MR[6:5], MR8, MR13, MR24 Definition

Table 4-1: Mode Register Contents

Mode Register	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0			
MBO			Latency Mode	REF							
MIRO		OP[0] =0b: Both legacy and modified refresh mode supported OP[1] =0b: Device supports normal latency									
MD5				Manufac	turer ID						
WING	1111 1111b										
MP6				Revisi	on ID1						
WIXO	0000 0000b										
	I/O V	Vidth		Den	sity						
MR8	OP[7 00b: x16	':6] = /channel		OP[7:6] = 00b	: x16/channel						
						VRO					
MR13	OP[2] = 0b: Normal operation (default)										
		1b:	Output the V _R	EF(CA) Value on	DQ/ and V _{REF}	(DQ) value on L	DQ6				
	TRR Mode		MAC				MAC Value				
MR24		OP[3:0] = 1000b: Unlimited MAC									
				OP[7] = 0b: Di	sable (default)						
				1b: Re	served						

Notes:

1. The contents of MR0, MR[6:5], MR8, MR13, and MR24 will reflect information specific to each die in these packages.

2. Other bits not defined above and other mode registers are referred to Mode Register Assignments and Definitions section.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.4 IDD Specifications

Refer to I_{DD} Specification Parameters and Test Conditions section for detailed conditions.

Table 4-2: IDD Specifications

 V_{DD2} , V_{DDQ} = 1.06–1.17V; V_{DD1} = 1.70–1.95V; T_C = –10°C to +85°C

Demonster	Cumplu	Speed Grade	l luit	Nata
Parameter	Supply	3200 Mbps		Note
IDD01	V _{DD1}	5.40		
IDD02	V _{DD2}	63	mA	
Ισροά	Vddq	1.35	7	
I _{DD2P1}	V _{DD1}	1.62		
IDD2P2	V _{DD2}	2.34	mA	
IDD2PQ	Vddq	1.35	7	
IDD2PS1	V _{DD1}	1.62		
IDD2PS2	V _{DD2}	2.34	mA	
I _{DD2PSQ}	V _{DDQ}	1.35	7	
Idd2N1	V _{DD1}	1.62		
IDD2N2	V _{DD2}	37.8	mA	
Idd2nq	Vddq	1.35	7	
IDD2NS1	V _{DD1}	1.62		
IDD2NS2	V _{DD2}	27	mA	
IDD2NSQ	V _{DDQ}	1.35	7	
IDD3P1	V _{DD1}	1.62		
IDD3P2	V _{DD2}	14.4	mA	
IDD3PQ	V _{DDQ}	1.35	7	
IDD3PS1	V _{DD1}	1.62		
IDD3PS2	V _{DD2}	14.4	mA	
IDD3PSQ	VDDQ	1.35		
Idd3n1	V _{DD1}	2.16		
IDD3N2	V _{DD2}	41.4	mA	
Iddsnq	V _{DDQ}	1.35		
	V _{DD1}	2.16		
I _{DD3NS2}	V _{DD2}	30.6	mA	
IDD3NSQ	VDDQ	1.35		

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-2:I_{DD} Specifications (Continued)

 V_{DD2} , V_{DDQ} = 1.06–1.17V; V_{DD1} = 1.70–1.95V; T_{C} = –10°C to +85°C

Paramatar	Supply	Speed Grade	Unit	Noto
Parameter	Supply	3200 Mbps	Unit	Note
IDD4R1	V _{DD1}	3.78		
IDD4R2	V _{DD2}	579.6	mA	3
Idd4rq	VDDQ	246.6		
I _{DD4W1}	V _{DD1}	3.42		
IDD4W2	V _{DD2}	477	mA	
IDD4WQ	VDDQ	1.35		
IDD51	V _{DD1}	16.2		
IDD52	V _{DD2}	122.4	mA	
I _{DD5Q}	V _{DDQ}	1.35		
IDD5AB1	V _{DD1}	2.16		
Idd5ab2	V _{DD2}	45	mA	
Idd5abq	VDDQ	1.35		
IDD5PB1	V _{DD1}	2.16		
IDD5PB2	V _{DD2}	45	mA	
IDD5PBQ	V _{DDQ}	1.35		

Notes:

1. Published I_{DD} values except I_{DD4RQ} are the maximum of the distribution of the arithmeticmean. Refer to the following note for I_{DD4RQ}; refer to I_{DD6} Full-Array Self Refresh Currenttable for I_{DD6}.

2. I_{DD4RQ} value is reference only. Typical value. DBI disabled, $V_{OH} = V_{DDQ}/3$, $T_C = 25^{\circ}C$.

Table 4-3: IDD6 Full-Array Self Refresh Current

V_{DD2}, V_{DDQ} = 1.06–1.17V; V_{DD1} = 1.70–1.95V

Temperature	Supply	Full-Array Self Refresh Current	Unit
	V _{DD1}	0.342	
25°C	V _{DD2}	0.846	
	25°C VDD2 VDD2 VDD2 VDD2	0.018	
	V _{DD1}	1.8	mA
85°C	V _{DD2}	6.84	
	V _{DDQ}	1.35	

Notes:

1. IDD6 25°C is the typical, and IDD6 85°C is the maximum of the distribution of the arithmeticmean.

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.5 Functional Description

The Mobile Low-Power DDR4 SDRAM (LPDDR4) is a high-speed CMOS, dynamic random-access memory internally configured with either 1 or 2 channels. Each channel iscomprised of 16 DQs and 8 banks.

LPDDR4 uses a 2-tick, single-data-rate (SDR) protocol on the CA bus to reduce thenumber of input signals in the system. The term "2-tick" means that the command/address is decoded across two transactions, such that half of the command/address iscaptured with each of two consecutive rising edges of CK. The 6-bit CA bus containscommand, address, and bank information. Some commands such as READ, WRITE, MASKED WRITE, and ACTIVATE require two consecutive 2-tick SDR commands tocomplete the instruction.

LPDDR4 uses a double-data-rate (DDR) protocol on the DQ bus to achieve high-speedoperation. The DDR interface transfers two data bits to each DQ lane in one clock cycleand is matched to a 16n-prefetch DRAMarchitecture. A write/read access consists of asingle 16n-bit-wide data transfer to/from the DRAM core and 16 corresponding n-bitwidedata transfers at the I/O pins.

Read and write accesses to the device are burst-oriented. Accesses start at a selected column address and continue for a programmed number of columns in a programmed sequence.

Accesses begin with the registration of an ACTIVATE command to open a row in thememory core, followed by a WRITE or READ command to access column data within the open row. The address and bank address (BA) bits registered by the ACTIVATE commandare used to select the bank and row to be opened. The address and BA bits registered with the WRITE or READ command are used to select the bank and the startingcolumn address for the burst access.

Prior to normal operation, the LPDDR4 SDRAM must be initialized. Following sectionsprovide detailed information about device initialization, register definition, commanddescriptions and device operations.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Monolithic Device Addressing

The table below includes all monolithic device addressing options defined by JEDEC.

Under the SDRAM Addressing heading near the beginning of this data sheet are addressingdetails for this productdata sheet.

Table 4-4: Monolithic Device Addressing – 2 Channels Die

Mem (Memory density (per die) 4Gb 6Gb		6Gb	8Gb	12Gb	16Gb	
Merr (pe	emory density per channel) 2Gb 3Gb		3Gb	4Gb	6Gb	8Gb	
Со	Configuration x 8 banks x 2 channels		24Mb x 16DQ x 8 banks x 2 channels	32Mb x 16DQ x 8 banks x 2 channels	48Mb x 16DQ x 8 banks x 2 channels	64Mb x 16DQ x 8 banks x 2 channels	
N chanr	umber of nels (per die)	2	2	2	2	2	
Numl (pe	ber of banks r channel)	8	8	8	8	8	
Arra (bits,	ay prefetch per channel)	256	256	256	256	256	
Number of rows (per channel)		16,384	24,576	32,768	49,152	65,536	
Number of columns (fetch boundaries)		64	64	64 64		64	
Page	size (bytes)	2048	2048	2048	2048	2048	
Char (bits	hannel density (ts per channel) 2,147,483,648		3,221,225,472	4,294,967,296	6,442,450,944	8,589,934,592	
Tot (bit	tal density ts per die)	4,294,967,296	6,442,450,944	42,450,944 8,589,934,592 12,884		17,179,869,184	
Bar	nk address	BA[2:0]	BA[2:0]	BA[2:0]	BA[2:0]	BA[2:0]	
x16	Bank address BA[2:0] BA[2:0] Row R[14:0] R[14:0] add R[13:0] R14 =		R[14:0] (R13 = 0 when R14 = 1)	R[14:0]	R[15:0] (R14 = 0 when R15 = 1)	R[15:0]	
	Col. C[9:0] C[9:0]		C[9:0]	C[9:0]	C[9:0]		
Bur addre	rst starting ess boundary	64 bit	64 bit	64 bit	64 bit	64 bit	

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-5: Monolithic Device Addressing – 1 Channel Die

Mem (ory density per die)	4Gb	6Gb	8Gb	12Gb	16Gb	
Men (pe	nory density er channel)	4Gb	6Gb	6Gb 8Gb 12Gb		16Gb	
Co	nfiguration	32Mb x 16 DQ x 8 banks	48Mb x 16 DQ x 8 banks	64Mb x 16 DQ x 8 banks	48Mb x 16DQ x 8 banks x 2 channels	64Mb x 16DQ x 8 banks x 2 channels	
Numb	er of channels (per die)	1	1	1	2	2	
Num (pe	ber of banks er channel)	8	8	8	8	8	
Array pe	prefetch (bits, r channel)	256	256	256	256	256	
Number of rows (per channel) 32,76		32,768	49,152	65,536	98,304	131,072	
Number of columns (fetch boundaries) 64		64	64	64	64	64	
Page	e size (bytes)	2048	2048	2048	2048	2048	
Cha (bits	Channel density oits per channel) 4,294,967,296		6,442,450,944	8,589,934,592	12,884,901,888	17,179,869,184	
Total	density (bits per die)	4,294,967,296	6,442,450,944	i0,944 8,589,934,592 12,884,901		17,179,869,184	
Bai	nk address	BA[2:0]	BA[2:0]	BA[2:0]	BA[2:0]	BA[2:0]	
x16	Row add R[1		R[15:0] (R14 = 0 when R15 = 1)	R[15:0]	R[16:0] (R15 = 0 when R16 = 1)	R[16:0]	
	Column add	C[9:0]	C[9:0]	C[9:0]	C[9:0]	C[9:0]	
Bu addre	rst starting ess boundary	64 bit	64 bit	64 bit	64 bit	64 bit	

Notes:

1. The lower two column addresses (C[1:0]) are assumed to be zero and are not transmittedon the CA bus.

2. Row and column address values on the CA bus that are not used for a particular densityshould be at valid logic levels.

3. For non-binary memory densities, only a quarter of the row address space is invalid. When the MSB address bit is HIGH, then the MSB - 1 address bit must be LOW.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.6 Power-Up and Initialization

To ensure proper functionality for power-up and reset initialization, default values for the MR settings are provided in the table below.

Item	Mode Register Setting	Default Setting	Description
FSP-OP/WR	MR13 OP[7:6]	00b	FSP-OP/WR[0] are enabled
WLS	MR2 OP[6]	0b	WRITE latency set A is selected
WL	MR2 OP[5:3]	000b	WL = 4
RL	MR2 OP[2:0]	000b	RL = 6, nRTP = 8
nWR	MR1 OP[6:4]	000b	nWR = 6
DBI-WR/RD	MR3 OP[7:6]	00b	Write and read DBI are disabled
CA ODT	MR11 OP[6:4]	000b	CA ODT is disabled
DQ ODT	MR11 OP[2:0]	000b	DQ ODT is disabled
$V_{REF(CA)}$ setting	MR12 OP[6]	1b	$V_{\text{REF(CA)}}$ range[1] is enabled
V _{REF(CA)} value	MR12 OP[5:0]	011101b	Range1: 50.3% of VDDQ
V _{REF(DQ)} setting	MR14 OP[6]	1b	V _{REF(DQ)} range[1] enabled
$V_{\text{REF}(DQ)}$ value	MR14 OP[5:0]	011101b	Range1: 50.3% of VDDQ

The following sequence must be used to power up the device. Unless specified otherwise, this procedure is mandatory. The power-up sequence of all channels must proceeds imultaneously.

Voltage Ramp

 While applying power (after Ta), RESET_n should be held LOW (≤0.2 × V_{DD2}), and allother inputs must bebetween V_{IL,min} and V_{IH,max}. The device outputs remain at High-Zwhile RESET_n is held LOW. Power supplyvoltage ramp requirements are provided in the table below. V_{DD1} must ramp at the same time or earlier than V_{DD2}.V_{DD2} must rampat the same time or earlier than V_{DDQ}.

Table 4-7: Voltage Ramp Conditions

After	licable Conditions
To is see bod	V _{DD1} must be greater than V _{DD2}
Ta is reached	V _{DD2} must be greater than V _{DDQ} - 200mV

Notes:

1. Ta is the point when any power supply first reaches 300mV.

2. Voltage ramp conditions in above table apply between Ta and power-off (controlled oruncontrolled).

3. Tb is the point at which all supply and reference voltages are within their defined operatingranges.

4. Power ramp duration ^tINIT0 (Tb-Ta) must not exceed 20ms.

5. The voltage difference between any $V_{\mbox{\scriptsize SS}\mbox{\scriptsize SS}}$ and $V_{\mbox{\scriptsize SS}\mbox{\scriptsize Q}}$ must not exceed 100mV.

- 2. Following completion of the of the voltage ramp (Tb), RESET_n must be held LOW fortINIT1. DQ, DMI, DQS_t, and DQS_c voltage levels must be between VSSQ and VDDQduring voltage ramp to avoid latch-up. CK_t and CK_c, CS, and CA input levels must bebetween VSS and VDD2 during voltage ramp to avoid latch-up. Voltage ramppower supplyrequirements are provided in the table below.
- 3. Beginning at Tb, RESET_n must remain LOW for at least tINIT1(Tc), after which RESET_n can be de-asserted toHIGH(Tc). At least 10ns before CKE de-assertion, CKE isrequired to be set LOW. All other input signals are"Don't Care."

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-1: Voltage Ramp and Initialization Sequence

Note:

1. Training is optional and may be done at the system designer's discretion. The order offraining may be different than what is shown here.

- 4. After RESET_n is de-asserted(Tc), wait at least tINIT3 before activating CKE. CK_t,CK_c must be started and stabilized for tINIT4 before CKE goes active(Td). CS must remainLOW when the controller activates CKE.
- 5. After CKE is set to HIGH, wait a minimum of tINIT5 to issue any MRR or MRW commands(Te). For MRR andMRW commands,the clock frequency must be within therange defined for tCKb. Some AC parameters (forexample, tDQSCK) could have relaxed timings (such as tDQSCKb) before the system is appropriately configured.
- 6. After completing all MRW commands to set the pull-up, pull-down, and Rx terminationvalues, the controller canissue the ZQCAL START command to the memory(Tf). This command is used to calibrate the VOH level and theoutput impedance over process, voltage, and temperature. In systems where more than one device share oneexternalZQ resistor, the controller must not overlap the ZQ calibration sequence of each device. The ZQcalibration sequence is completed after tZQCAL (Tg). The ZQCAL LATCHcommand must be issued to update the DQ drivers and DQ + CA ODT to the calibratedvalues.
- 7. After tZQLAT is satisfied (Th), the command bus (internal V_{REF(CA)}, CS, and CA)should be trained for high-speedoperation by issuing an MRW command (commandbus training mode). This command is used to calibrate thedevice's internal V_{REF} and align CS/CA with CK for high-speed operation. The device will power-up with receiversconfigured for low-speed operations and with V_{REF(CA)} set to a default factory setting.Normal device operation atclock speeds higher than tCKb may not be possible untilcommand bus training is complete. The command bustraining MRW command uses the CA bus as inputs for the calibration data stream, and it outputs the resultsasynchro-nously on the DQ bus. See command bus training in the MRW section for informationon how toenter/exit the training mode.
- 8. After command bus training, the controller must perform write leveling. Write levelingmode is enabled when MR2OP[7] is HIGH(Ti). See the Write Leveling section for adetailed description of the write leveling entry and exitsequence. In write levelingmode, the controller adjusts write DQS timing to the point where the device recognizes the start of write DQ data burst with desired WRITE latency.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

- 9. After write leveling, the DQ bus (internal V_{REF(DQ)}, DQS, and DQ) should be trainedfor high-speed operation using the MPC TRAINING commands and by issuing MRWcommands to adjust V_{REF(DQ)}. The device will power-up with receivers configured forlow-speed operations and with V_{REF(DQ)} set to a default factory setting. Normal deviceoperation at clock speeds higher than tCKb should not be attempted until DQ bus training complete. TheMPC[READ DQ CALIBRATION] command is used together withMPC[READ-FIFO] or MPC[WRITE-FIFO]commands to train the DQ bus without disturbing memory array contents. See the DQ Bus Training section formore information on the DQ bus training sequence.
- 10. At Tk, the device is ready for normal operation and is ready to accept any valid command. Any mode registers that have not previously been configured for normal operationshould be written at this time.

Parameter	Min	Мах	Unit	Comment
^t INIT0	-	20	ms	Maximum voltage ramp time
^t INIT1	200	_	μs	Minimum RESET_n LOW time after completion of voltage ramp
^t INIT2	10	-	ns	Minimum CKE LOW time before RESET_n goes HIGH
^t INIT3	2	-	ms	Minimum CKE LOW time after RESET_n goes HIGH
^t INIT4	5	-	^t CK	Minimum stable clock before first CKE HIGH
^t INIT5	2	_	μs	Minimum idle time before first MRW/MRR command
^t CKb	Note 1, 2	Note ^{1, 2}	ns	Clock cycle time during boot

Table 4-8: Initialization Timing Parameters

Notes:

1. Minimum ^tCKb guaranteed by DRAM test is 18ns.

2. The system may boot at a higher frequency than dictated by minimum ^tCKb. The higherboot frequency is system dependent.

Reset Initialization with Stable Power

The following sequence is required for RESET at no power interruption initialization.

- 1. Assert RESET_n below 0.2 × VDD2 anytime when reset is needed. RESET_n needsto be maintained forminimum tPW_RESET. CKE must be pulled LOW at least10ns before de-asserting RESET_n.
- 2. Repeat steps 4–10 in Voltage Ramp section.

Table 4-9: Reset Timing Parameter

Deremeter	Va	lue	llait	Commont	
Parameter	Min	Мах	Unit	Comment	
^t PW_RESET	100	_	ns	Minimum RESET_n LOW time for reset initialization with stable power	

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.7 Power-Off Sequence

Controlled Power-Off

While powering off, CKE must be held LOW ($\leq 0.2 \times V_{DD2}$); all other inputs must be between V_{IL,min} and V_{IH,max}. The device outputs remain at High-Z while CKE is held LOW.

DQ, DMI, DQS_t, and DQS_c voltage levels must be between V_{SSQ} and V_{DDQ} during the power-off sequence to avoid latch-up. CK_t, CK_c, CS, and CA input levels must be between V_{SS} and V_{DD2} during the power-off sequence to avoid latch-up.

Tx is the point where any power supply drops below the minimum value specified in the minimum DC Operating Condition.

Tz is the point where all power supplies are below 300mV. After Tz, the device is poweredoff.

Table 4-10: Power Supply Conditions

The voltage difference between V_{SS} and V_{SSQ} must not exceed 100mV

Between	Applicable Conditions
Ty and Ta	V _{DD1} must be greater than V _{DD2}
	V_{DD2} must be greater than V_{DDQ} - 200mV

Uncontrolled Power-Off

When an uncontrolled power-off occurs, the following conditions must be met.

- At Tx, when the power supply drops below the minimum values specified in the RecommendedDC OperatingConditions table, all power supplies must be turned off and all power supply current capacity must be at zero, except for any static charge remaining in the system.
- After Tz (the point at which all power supplies first reach 300mV), the device mustpower off. During this period, the relative voltage between power supplies is uncontrolled.VDD1 and VDD2 must decrease with a slope lower than0.5 V/μs between Txand Tz.

An uncontrolled power-off sequence can occur a maximum of 400 times over the life of the device.

Table 4-11: Power-Off Timing

Parameter	Symbol	Min	Мах	Unit
Power-off ramp time	^t POFF	-	2	sec

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.8 Mode Registers

Mode Register Assignments and Definitions

Mode register definitions are provided in the Mode Register Assignments table. In theaccess column of the table, R indicates read-only; W indicates write-only; R/W indicatesread- or write-capable or enabled. The MRR command is used to read from a register. The MRW command is used to write to a register.

Table 4-12: Mode Register Assignments

XIN 🕱 CUN

Notes 1-5 apply to entire table

MR#	MA[7:0]	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
0	00h	Device info	R	CATR	RFU	RFU RZQI			RFU		REF	
1	01h	Device feature 1	W	RD- PST	nW	/R (for AF	P)	RD- PRE	WR- PRE	BL		
2	02h	Device feature 2	W	WR Lev	WLS		WL		RL			
3	03h	I/O config-1	W	DBI- WR	DBI-RD		PDDS		PPRP	WR- PST	PU- CAL	
4	04h	Refresh and training	R /W	TUF	UF Thermal offset PPRE SR abort Refresh r			efresh ra	ate			
5	05h	Basic config-1	R				Manufact	urer ID				
6	06h	Basic config-2	R	Revision ID1								
7	07h	Basic config-3	R	Revision ID2								
8	08h	Basic config-4	R	I/O y	width		Der	nsity		Туре		
9	09h	Test mode	W	Vendor-specific test mode								
10	0Ah	I/O calibration	W				RFU				ZQ RST	
11	0Bh	ODT	W	RFU		CA ODT		RFU		DQ ODT		
12	0Ch	VREF(CA)	R /W	RFU	VR _{CA}			VREI	F(CA)			
13	0Dh	Register control	W	FSP-OP	FSP- WR	DMD	RRO	VRCG	VRO	RPT	СВТ	
14	0Eh	VREF(DQ)	R/W	RFU	VRDQ			VRE	=(DQ)			
15	0Fh	DQI-LB	W		Low	er-byte in	vert regis	ter for DC	calibrati	on		
16	10h	PASR_Bank	W			F	PASR bar	nk mask				
17	11h	PASR_Seg	W			PA	SR segn	nent mask				
18	12h	IT-LSB	R			DQS	oscillator	count – L	SB			
19	13h	IT-MSB	R			DQS	oscillator	count – N	ISB			
20	14h	DQI-UB	W		per	-byte inv	ert registe	er for DQ	calibration	า		
21	15h	Vendor use	W				RF	U				

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-12: Mode Register Assignments (Continued)

MR#	MA[7:0]	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
22	16h	ODT feature 2	W	RF	RFU ODTD-CA ODTE- ODTE-CK SoC ODT					ſ	
23	17h	DQS oscillator stop	W			DQS o	scillator	run-time sett	ing		
24	18h	TRR control	R /W	TRR mode	Т	RR mode Ba	an	Unltd MAC	Ν	/IAC valu	e
25	19h	PPR resources	R	B7	B6	B5	B4	B3	B2	B1	B0
26-29	1Ah~1Dh	-	-	Reserved for future use							
30	1Eh	-	W			S	SDRAM \	will ignore			
31	1Fh	Do not use	-			Re	served fo	or future use			
32	20h	DQ calibration pattern B	W			See	DQ calib	ration sectio	n		
33-38	21h≈26h	Do not use	-				Do no	ot use			
39	27h	Reserved for test	W			5	SDRAM \	vill ignore			
40	28h	DQ calibration pattern B	W	See DQ calibration section							
41-47	29h≈2Fh	Do not use	_				Do no	ot use			
48-63	30h $pprox$ 3Fh	Reserved	_			Res	served fo	or future use			

Notes:

1. RFU bits must be set to 0 during MRW commands.

2. RFU bits are read as 0 during MRR commands.

3. All mode registers that are specified as RFU or write-only shall return undefined datawhen read via an MRR command.

4. RFU mode registers must not be written.

5. Writes to read-only registers will not affect the functionality of the device.

Table 4-13: MR0 Device Feature 0 (MA[7:0] = 00h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
	RFU		RZ	ZQI	RFU	Latency mode	REF

Table 4-14: MR0 Op-Code Bit Definitions

Register Information	Туре	OP	Definition	Notes
Refresh mode	Readonly	OP[0]	0b: Both legacy and modified refresh mode supported 1b: Only modified refresh mode supported	
Latency mode	Readonly	OP[1]	0b: Device supports normal latency 1b: Device supports byte mode latency	5, 6
Built-in self-test for RZQ information	Readonly	OP[4:3]	00b: RZQ self-test not supported 01b: ZQ may connect to V _{SSQ} or float 10b: ZQ may short to V _{DDQ} 11b: ZQ pin self-test completed, no error condition detected (ZQ may not connect to V _{SSQ} , float, or short to V _{DDQ})	1-4

Notes:

1. RZQI MR value, if supported, will be valid after the following sequence:

• Completion of MPC[ZQCAL START] command to either channel

• Completion of MPC[ZQCAL LATCH] command to either channel then ^tZQLAT is satisfied

RZQI value will be lost after reset.

2. If ZQ is connected to V_{SSQ} to set default calibration, OP[4:3] must be set to 01b. If ZQ isnot connected to V_{SSQ} , either OP[4:3] = 01b or OP[4:3] = 10b might indicate a ZQ pin assembly error. It is recommended that the assembly error be corrected.

3. In the case of possible assembly error, the device will default to factory trim settings forRON, and will ignore ZQ CALIBRATION commands. In either case, the device may notfunction as intended.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

- 4. If the ZQ pin self-test returns OP[4:3] = 11b, the device has detected a resistor connected to the ZQ pin. However, this result cannot be used to validate the ZQ resistor value or that the ZQ resistor meets the specified limits (that is, $24\Omega \pm 1\%$).
- 5. See byte mode addendum spec for byte mode latency details.
- 6. Byte mode latency for 2Ch. x16 device is only allowed when it is stacked in a same packagewith byte mode device.

Table 4-15: MR1 Device Feature 1 (MA[5:0] = 01h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
RD-PST		nWR (for AP)		RD-PRE	WR-PRE	В	3L

Table 4-16: MR1 Op-Code Bit Definitions

Feature	Туре	OP	OP	Notes
BL Burst length	Write only	OP[1:0]	00b: BL = 16 sequential (default) 01b: BL= 32 sequential 10b: BL = 16 or 32 sequential (on-the-fly) 11b: Reserved	1
WR-PRE Write preamble length	Write only	OP[2]	0b: Reserved 1b: WR preamble = 2 × ^t CK	5, 6
RD-PRE Read preamble type	Write only	OP[3]	0b: RD preamble = Static (default) 1b: RD preamble = Toggle	3, 5, 6
nWR Write-recovery for AUTO PRECHARGE command	Write only	OP[6:4]	000b: nWR = 6 (default) 001b: nWR = 10 010b: nWR = 16 011b: nWR = 20 100b: nWR = 24 101b: nWR = 30 110b: nWR = 34 111b: nWR = 40	2, 5, 6
RD-PST Read postamble length	Write only	OP[7]	0b: RD postamble = 0.5 × ^t CK (default) 1b: RD postamble = 1.5 × ^t CK	4, 5, 6

Notes:

1. Burst length on-the-fly can be set to either BL = 16 or BL = 32 by setting the BL bit in the command operands. See the Command Truth Table.

2. The programmed value of nWR is the number of clock cycles the device uses to determine the starting point of an internal precharge after a write burst with auto precharge(AP) enabled. See Frequency Ranges for RL, WL, and nWR Settings table.

3. For READ operations, this bit must be set to select between a toggling preamble and anon-toggling preamble. (See the Preamble section.)

- 4. OP[7] provides an optional READ postamble with an additional rising and falling edgeof DQS_t. The optional postamble cycle is provided for the benefit of certain memorycontrollers.
- 5. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MRaddress.
- 6. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, that is, the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will beignored by the device and may be changed without affecting device operation.

XIN 🕱 CUN

Table 4-17: Burst Sequence for Read

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

C4	C3	C2	C1	C0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
16-	Bit	RE/	AD (Оре	erati	on																														
v	0	0	0	0	0	1	2	3	4	5	6	7	8	9	А	в	С	D	Е	F																
v	V 0 1 0 0 4 5 6 7 8 9 A B C D E F 0 1 2 3																																			
v	1 0 0 8 9 A B C D E F 0 1 2 3 4 5 6 7																																			
v	1	1	0	0 0 C D E F 0 1 2 3 4 5 6 7 8 9 A B																																
32-	2-Bit READ Operation																																			
0	0	0	0	0	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
0	0	1	0	0	4	5	6	7	8	9	А	В	С	D	Е	F	0	1	2	3	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	10	11	12	13
0	1	0	0	0	8	9	Α	В	С	D	Е	F	0	1	2	3	4	5	6	7	18	19	1A	1B	1C	1D	1E	1F	10	11	12	13	14	15	16	17
0	1	1	0	0	С	D	Е	F	0	1	2	3	4	5	6	7	8	9	А	В	1C	1D	1E	1F	10	11	12	13	14	15	16	17	18	19	1A	1B
1	0	0	0	0	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
1	0	1	0	0	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	10	11	12	13	4	5	6	7	8	9	А	В	С	D	Е	F	0	1	2	3
1	1	0	0	0	18	19	1A	1B	1C	1D	1E	1F	10	11	12	13	14	15	16	17	8	9	А	В	С	D	Е	F	0	1	2	3	4	5	6	7
1	1	1	0	0	1C	1D	1E	1F	10	11	12	13	14	15	16	17	18	19	1A	1B	С	D	Е	F	0	1	2	3	4	5	6	7	8	9	Α	В

Notes:

1. C[1:0] are not present on the CA bus; they are implied to be zero.

2. The starting burst address is on 64-bit (4n) boundaries.

Table 4-18: Burst Sequence for Write

C4	C3	C2	C1	C0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
16-	Bit V	VRI	TE C	Dpei	ratio	on																														
V	0	0	0	0	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F																
32-	Bit V	VRI	TE C	Dpei	ratio	on																														
0	0	0	0	0	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
N	otes	5:																																		

1. C[1:0] are not present on the CA bus; they are implied to be zero.

2. The starting burst address is on 256-bit (16n) boundaries for burst length 16.

3. The starting burst address is on 512-bit (32n) boundaries for burst length 32.

4. C[3:2] must be set to 0 for all WRITE operations.

Table 4-19: MR2 Device Feature 2 (MA[5:0] = 02h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
WR Lev	WLS		WL			RL	

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Feature		OP	Definition	Notes
RL READ latency	Write -only	OP[2:0]	RL and nRTP for DBI-RD disabled (MR3 OP[6] = 0b) 000b: RL = 6, nRTP = 8 (default) 001b: RL = 10, nRTP = 8 010b: RL = 14, nRTP = 8 011b: RL = 20, nRTP = 8 100b: RL = 24, nRTP = 10 101b: RL = 28, nRTP = 12 110b: RL = 32, nRTP = 14 111b: RL = 36, nRTP = 16 RL and nRTP for DBI-RD enabled (MR3 OP[6] = 1b) 000b: RL = 6, nRTP = 8 001b: RL = 12, nRTP = 8 010b: RL = 22, nRTP = 8 101b: RL = 23, nRTP = 10 101b: RL = 32, nRTP = 12 110b: RL = 32, nRTP = 12 110b: RL = 40, nRTP = 16	1, 3, 4
WL WRITE latency	Write -only	OP[5:3]	WL set A (MR2 OP[6] = 0b) 000b: WL = 4 (default) 001b: WL = 6 010b: WL = 8 011b: WL = 10 100b: WL = 12 101b: WL = 14 110b: WL = 16 111b: WL = 18 WL set B (MR2 OP[6] = 1b) 000b: WL = 4 001b: WL = 8 010b: WL = 12 011b: WL = 18 100b: WL = 22 101b: WL = 26 110b: WL = 30 111b: WL = 34	1, 3, 4
WLS	Write	OP[6]	0b: Use WL set A (default)	1, 3, 4
WRITE latencyset	-only Write	OP[7]	ID: Use VVL set B 0b: Disable write leveling (default)	2
vvrite leveling	-only		TD: Enable write leveling	

Notes:

1. See Latency Code Frequency Table for allowable frequency ranges for RL/WL/nWR.

After an MRW command to set the write leveling enable bit (OP[7] = 1b), the device remains the MRW state until another MRW command clears the bit (OP[7] = 0b). Noother commands are allowed until the write leveling enable bit is cleared.
 There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. Only the

registers for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command this MR address, or read from with an MRR command to this address.

4. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, that is, the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will beignored by the device and may be changed without affecting device operation.

5. nRTP is valid for BL16 only. For BL32, the SDRAM will add 8 clocks to the nRTP value beforestarting a precharge.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-21:	Frequency	Ranges	for RL,	WL,	nWR,	and nRTP	Settings
-------------	-----------	--------	---------	-----	------	----------	----------

READ I	_atency	WRITE	Latency			Lower	Upper		
No DBI	w/DBI	Set A	Set B	nWR	nRTP	Frequency Limit (>)	Frequency Limit(≤)	Units	Notes
6	6	4	4	6	8	10	266		
10	12	6	8	10	8	266	533		
14	16	8	12	16	8	533	800		
20	22	10	18	20	8	800	1066		1.6
24	28	12	22	24	10	1066	1333	IVITIZ	1-0
28	32	14	26	30	12	1333	1600		
32	36	16	30	34	14	1600	1866		
36	40	18	34	40	16	1866	2133		

Notes:

1. The device should not be operated at a frequency above the upper frequency limit orbelow the lower frequency limit shown for each RL, WL, or nWR value.

2. DBI for READ operations is enabled in MR3 OP[6]. When MR3 OP[6] = 0, then the "NoDBI" column should be used for READ latency. When MR3 OP[6] = 1, then the "w/DBI"column should be used for READ latency.

3. WRITE latency set A and set B are determined by MR2 OP[6]. When MR2 OP[6] = 0, thenWRITE latency set A should be used. When MR2 OP[6] = 1, then WRITE latency set Bshould be used.

4. The programmed value for nRTP is the number of clock cycles the device uses to determine the starting point of an internal PRECHARGE operation after a READ burst with AP(auto precharge) enabled . It is determined by RU(^tRTP/^tCK).

5. The programmed value of nWR is the number of clock cycles the device uses to determine the starting point of an internal PRECHARGE operation after a WRITE burst with AP (auto precharge) enabled. It is determined by RU(^tWR/^tCK).

6. nRTP shown in this table is valid for BL16 only. For BL32, the device will add 8 clocks tothe nRTP value before starting a precharge.

Table 4-22: MR3 I/O Configuration 1 (MA[5:0] = 03h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
DBI-WR	DBI-RD		PDDS		PPRP	WR-PST	PU-CAL

XIN 🕱 CUN Table 4-23: MR3 Op-Code Bit Definitions

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Feature	Туре	OP	Definition	Notes
PU-CAL		OP[0]	0b: V _{DDQ} /0.6	1–4
	-			
WR-PST (WR postamble length)		OP[1]	0b: WR postamble = 0.5 × ^t CK (default)	235
with or (with postallible longill)		0,[,]	1b: WR postamble = 1.5 × ^t CK	2, 0, 0
PPRP		00[2]	0b: PPR protection disabled (default)	6
(Post-package repair protec-tion)		OF[2]	1b: PPR protection enabled	0
			000b: RFU	
			001b: Rzq/1	
	Mrite only		010b: Rzq/2	
PDDS	write-only	0015-21	011b: Rzq/3	1 2 2
(Pull-down drive strength)		OP[5.3]	100b: Rzq/4	1, 2, 3
			101b: Rzq/5	
			110b: Rzq/6 (default)	
			111b: Reserved	
DBI-RD		ODICI	0b: Disabled (default)	2.2
(DBI-read enable)		OP[0]	1b: Enabled	2, 3
DBI-WR		OP[7]	0b: Disabled (default)	2.2
(DBI-write enable)			1b: Enabled	2, 3

Notes:

1. All values are typical. The actual value after calibration will be within the specified tolerancefor a given voltage and temperature. Recalibration may be required as voltage and temperature vary.

- 2. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MRaddress, or read from with an MRR command to this address.
- 3. There are two physical registers assigned to each bit of this MR parameter: designatedset point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, for example, the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- 4. For dual-channel device, PU-CAL (MR3-OP[0]) must be set the same for both channels ona die. The SDRAM will read the value of only one register (Ch.A or Ch.B); the choice isvendor-specific, so both channels must be set the same.

5. 1.5 × tCK apply > 1.6 GHz clock.

6. If MR3 OP[2] is set to 1b, PPR protection mode is enabled. The PPR protection bit is asticky bit and can only be set to 0b by a power on reset. MR4 OP[4] controls entry to PPRmode. If PPR protection is enabled then the DRAM will not allow writing of 1b to MR4OP[4].

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-24: MR4 Device Temperature (MA[5:0] = 04h)											
OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0				
TUF	Thermal offset		PPRE	SR abort	Refresh rate						

Table 4-25: MR4 Op-Code Bit Definitions

Feature	Туре	OP	Definition	Notes	
		OP[2:0]	000b: SDRAM low temperature operating limit exceeded		
			001b: 4x refresh		
			010b: 2x refresh		
Pefresh rate	Read-only		011b: 1x refresh (default)	1–4,	
			100b: 0.5x refresh	7–9	
			101b: 0.25x refresh, no derating		
			110b: 0.25x refresh, with derating		
			111b: SDRAM high temperature operating limit exceeded		
SR abort	W/rite	OP[3]	0b: Disable (default)	9	
(Self RefreshAbort)	Ville		1b: Device dependent		
PPRE			0b: Exit PPR mode (default)		
(Post-package repair	Write	OP[4]	1b: Enter PPR mode (Reference MR25 OP[7:0] for available PPR	5, 9	
entry/exit)			resources)		
	Write	OP[6:5]	00b: No offset, 0~5°C gradient (default)		
Thermal Offset-Controller			01b: 5°C offset, 5~10°C gradient	0	
offset to TCSR			10b: 10°C offset, 10~15°C gradient	9	
			11b: Reserved		
UF Bood only			0b: OP[2:0] No change in OP[2:0] since last MR4 read (default)	6 9	
(Temperature updateflag)	Read-only	UP1	1b: Change in OP[2:0] since last MR4 read	0-0	

Notes:

1. The refresh rate for each MR4 OP[2:0] setting applies to 'REFI, 'REFIpb, and 'REFW. MR4OP[2:0] = 011b corresponds to a device temperature of 85°C. Other values require eithera longer (2x, 4x) refresh interval at lower temperatures or a shorter (0.5x, 0.25x) refreshinterval at higher temperatures. If MR4 OP[2] = 1b, the device temperature is greaterthan 85°C.

- 2. At higher temperatures (>85°C), AC timing derating may be required. If derating is requirethe device will set MR4 OP[2:0] = 110b. See derating timing requirements in theAC Timing section.
- 3. DRAM vendors may or may not report all of the possible settings over the operatingtemperature range of the device. Each vendor guarantees that their device will work atany temperature within the range using the refresh interval requested by their device.
- 4. The device may not operate properly when MR4 OP[2:0] = 000b or 111b.
- 5. Post-package repair can be entered or exited by writing to MR4 OP[4].
- 6. When MR4 OP[7] = 1b, the refresh rate reported in MR4 OP[2:0] has changed since the last MR4 read. A mode register read from MR4 will reset MR4 OP[7] to 0b.
- 7. MR4 OP[7] = 0b at power-up. MR4 OP[2:0] bits are valid after initialization sequence(Te).
- 8. See the Temperature Sensor section for information on the recommended frequency of reading MR4.
- 9. MR4 OP[6:3] can be written in this register. All other bits will be ignored by the deviceduring an MRW command to this register.
8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-26: M	R5 Basic Con	figuration 1 (I	MA[5:0] = 05h))					
OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0									
	Manufacturer ID								

Table 4-27: MR5 Op-Code Bit Definitions

XIN 🕱 CUN

Feature	Туре	OP	Definition
Manufacturer ID	Read-only	OP[7:0]	1111 1111b All others: Reserved

Table 4-28: MR6 Basic Configuration 2 (MA[5:0] = 06h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			Revisi	on ID1			

Note:

1. MR6 is vendor-specific.

Table 4-29: MR6 Op-Code Bit Definitions

Feature	Туре	OP	Definition
Revision ID1	Read-only	OP[7:0]	xxxx xxxxb: Revision ID1

Note:

1.MR6 is vendor-specific.

Table 4-30: MR7 Basic Configuration 3 (MA[5:0] = 07h)

		<u>J </u>					
OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			Revisi	on ID2			

Table 4-31: MR7 Op-Code Bit Definitions

Feature	Туре	OP	Definition
Revision ID2	Read-only	OP[7:0]	xxxx xxxxb: Revision ID2

Note:

1. MR7 is vendor-specific.

Table 4-32: MR8 Basic Configuration 4 (MA[5:0] = 08h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
I/O v	vidth		Der	nsity		Ту	/pe

Table 4-33: MR8 Op-Code Bit Definitions

Feature	Туре	OP	Definition
Tupo	Road only		00b: S16 SDRAM (16n prefetch)
туре	Read-only		All others: Reserved
			0000b: 4Gb dual-channel die/2Gb single-channel die
			0001b: 6Gb dual-channel die/3Gb single-channel die
		OP[5:2]	0010b: 8Gb dual-channel die/4Gb single-channel die
			0011b: 12Gb dual-channel die/6Gb single-channel die
Density	Read-only		0100b: 16Gb dual-channel die/8Gb single-channel die
			0101b: 24Gb dual-channel die/12Gb single-channel die
			0110b: 32Gb dual-channel die/16Gb single-channel die
			1100b: 2Gb dual-channel die/1Gb single-channel die
			All others: Reserved
I/O width	Road only		00b: x16/channel
I/O width	Read-only	UP[7:6]	All others: Reserved

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-34: M	R9 Test Mode	e (MA[5:0] = 09	€h)					
OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
Vendor-specific test mode								

Table 4-35: MR9 Op-Code Definitions

XIN 🕱 CUN

Feature	Туре	OP	Definition
Test mode	Write-only	OP[7:0]	0000000b; Vendor-specific test mode disabled (default)

Table 4-36: MR10 Calibration (MA[5:0] = 0Ah)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			RFU				ZQ RESET

Table 4-37: MR10 Op-Code Bit Definitions

Feature	Туре	OP	Definition
ZQ reset	Write-only	OP[0]	0b: Normal operation (default) 1b: ZQ reset

Notes:

1. See AC Timing table for calibration latency and timing.

2. If ZQ is connected to V_{DDQ} through R_{ZQ}, either the ZQ CALIBRATION function or defaultcalibration (via ZQ reset) is supported. If ZQ is connected to V_{SS}, the device operateswith default calibration and ZQ CALIBRATION commands are ignored. In both cases, theZQ connection must not change after power is supplied to the device.

Table 4-38: MR11 ODT Control (MA[5:0] = 0Bh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0		
RFU		CA ODT		RFU		DQ ODT			

Table 4-39: MR11 Op-Code Bit Definitions

Feature	Туре	OP	Definition	Notes
DQ ODT DQ bus receiver on-die termination	Write-only	OP[2:0]	000b: Disable (default) 001b: RZQ/1 010b: RZQ/2 011b: RZQ/3 100b: RZQ/4 101b: RZQ/5 110b: RZQ/6 111b: RFU	1, 2, 3
CA ODT CA bus receiver on-die termination	Write-only	OP[6:4]	000b: Disable (default) 001b: RZQ/1 010b: RZQ/2 011b: RZQ/3 100b: RZQ/4 101b: RZQ/5 110b: RZQ/6 111b: RFU	1, 2, 3

Notes:

1. All values are typical. The actual value after calibration will be within the specified tolerancefor a given voltage and temperature. Re-calibration may be required as voltageand temperature vary.

- 2. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MRaddress, or read from with an MRR command to this address.
- 3. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of theFSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device and may be changed without affecting device operation.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕸 CUN

Table 4-40: M	R12 Register	Information (I	MA[5:0] = 0Ch)			
OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
RFU	VR _{CA}			Vre	F(CA)		

Table 4-41: MR12 Op-Code Bit Definitions

Feature	Туре	OP	Definition	Notes
VREF(CA)	Read/		000000b–110010b: See V _{REF} Settings Table	4 9 5 9
V _{REF(CA)} settings	Write	OP[5:0]	All others: Reserved	1–3, 5, 6
VR _{CA}	Read/	ODICI	0b: V _{REF(CA)} range[0] enabled	10450
V _{REF(CA)} range	Write	09[6]	1b: V _{REF(CA)} range[1] enabled (default)	1, 2, 4, 5,6

Notes:

1. This register controls the V_{REF(CA)} levels for frequency set point[1:0]. Values from eitherVR(ca)[0] or VR(ca)[1] may be selected by setting MR12 OP[6] appropriately.

- 2. A read to MR12 places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQwill be set to 0. See the MRR Operation section.
- 3. A write to MR12 OP[5:0] sets the internal $V_{REF(CA)}$ level for FSP[0] when MR13 OP[6] = 0bor sets the internal $V_{REF(CA)}$ level for FSP[1] when MR13 OP[6] = 1b. The time required for $V_{REF(CA)}$ to reach the set level depends on the step size from the current level to the newlevel. See the $V_{REF(CA)}$ training section.
- 4. A write to MR12 OP[6] switches the device between two internal V_{REF(CA)} ranges. Therange (range[0] or range[1]) must be selected when setting the V_{REF(CA)} register. The value,once set, will be retained until overwritten or until the next power-on or resetevent.
- 5. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. Only the registers for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MRaddress, or read from with an MRR command to this address.
- 6. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of theFSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.

Table 4-42: MR13 Register Control (MA[5:0] = 0Dh)

			••••				
OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
FSP-OP	FSP-WR	DMD	RRO	VRCG	VRO	RPT	CBT

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-43: MR13 Op-Code Bit D	efinition				
Feature	Туре	OP	Definition	Notes	
СВТ			0b: Normal operation (default)	1	
Command bus training		OP[0]	1b: Command bus training mode enabled	I	
RPT			0b: Disabled (default)		
Read preamble training		UF[I]	1b: Read preamble training mode enabled		
VRO			0b: Normal operation (default)	0	
V _{REF} output		UP[2]	1b: Output the $V_{REF(CA)}$ and $V_{REF(DQ)}$ values on DQ bits	2	
VRCG			0b: Normal operation (default)	3	
VREF current generator	Write only	OP[3]	1b: Fast response (high current) mode	3	
RRO	White-only		0b: Disable codes 001 and 010 in MR4 OP[2:0]	4 5	
Refresh rate option		OP[4]	1b: Enable all codes in MR4 OP[2:0]	4, 5	
DMD			0b: DATA MASK operation enabled (default)	6	
Data mask disable		OF[5]	1b: DATA MASK operation disabled	0	
FSP-WR		ODIGI	0b: Frequency set point[0] (default)	7	
requency set point write /read			1b: Frequency set point[1]	'	
FSP-OP			0b: Frequency set point[0] (default)	8	
Frequency set point operationmode			1b: Frequency set point[1]	0	

Notes:

1. A write to set OP[0] = 1 causes the LPDDR4 SDRAM to enter the command bus trainingmode. When OP[0] = 1 and CKE goes LOW, commands are ignored and the contents ofCA[5:0] are mapped to the DQ bus. CKE must be brought HIGH before doing a MRW toclear this bit (OP[0] = 0) and return to normal operation. See the Command Bus Trainingsection for more information.

2. When set, the device will output the VR_{EF(CA)} and V_{REF(DQ)} voltage on DQ pins. Only the "active" frequency set point, as defined by MR13 OP[7], will be output on the DQ pins. This function allows an external test system to measure the internal V_{REF} levels. The DQpins used for V_{REF} output are vendor-specific.

3. When OP[3] = 1, the V_{REF} circuit uses a high current mode to improve V_{REF} settling time.

4. MR13 OP[4] RRO bit is valid only when MR0 OP[0] = 1. For LPDDR4 SDRAM with MR0OP[0] = 0, MR4 OP[2:0] bits are not dependent on MR13 OP[4].

5. When OP[4] = 0, only 001b and 010b in MR4 OP[2:0] are disabled. LPDDR4 SDRAM mustreport 011b instead of 001b or 010b in this case. Controller should follow the refreshmode reported by MR4 OP[2:0], regardless of RRO setting. TCSR function does not dependen RRO setting.

6. When enabled (OP[5] = 0b) data masking is enabled for the device. When disabled(OP[5] = 1b), the device will ignore any mask patterns issued during a MASKED WRITEcommand. See the Data Mask section for more information.

7. FSP-WR determines which frequency set point registers are accessed with MRW andMRR commands for the following functions such as V_{REF(CA)} setting, V_{REF(DQ)} range, V_{REF(DQ)} setting, V_{REF(DQ)} range. For more information, refer to Frequency Set Point section.

8. FSP-OP determines which frequency set point register values are currently used to specifydevice operation for the following functions such as V_{REF(CA)} setting, V_{REF(DQ)} range, V_{REF(DQ)} range. For more information, refer to Frequency Set Point section.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

OP0

				(;	32M x 8-Bank	x 32-bit (2					
Table 4-44: M	ode Register1	4 (MA[5:0] = 0	0Eh)								
OP7	OP6	OP5	OP4	OP3	P3 OP2 O		OP2 OP1				
RFU				VRE	F(DQ)						

Table 4-45: MR14 Op-Code Bit Definition

Feature	Туре	OP Definition		Notes
V _{REF(DQ)} V _{REF(DQ)} settings	Read/	OP[5:0]	000000b–110010b: See V _{REF} Settings Table All others: Reserved	1–3, 5, 6
VR _{DQ} V _{REF(DQ)} range	Write	OP[6]	0b: V _{REF(DQ)} range[0] enabled 1b: V _{REF(DQ)} range[1] enabled (default)	1, 2, 4–6

Notes:

1. This register controls the V_{REF(DQ)} levels for frequency set point[1:0]. Values from eitherVR_{DQ}[0] (vendor defined) or VR_{DQ}[1] (vendor defined) may be selected by setting OP[6]appropriately.

2. A read (MRR) to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ shall be set to 0. See the MRR Operation section.

3. A write to OP[5:0] sets the internal $V_{REF(DQ)}$ level for FSP[0] when MR13 OP[6] = 0b, orsets FSP[1] when MR13 OP[6] = 1b. The time required for $V_{REF(DQ)}$ to reach the set leveldepends on the step size from the current level to the new level. See the $V_{REF(DQ)}$ trainingsection.

4. A write to OP[6] switches the device between two internal V_{REF(DQ)} ranges. The range(range[0] or range[1]) must be selected when setting the V_{REF(DQ)} register. The value,once set, will be retained until overwritten, or until the next power-on or reset event.

5. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. Only the registers for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MRaddress, or read from with an MRR command to this address.

6. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of theFSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

 Table 4-46: V_{REF} Setting for Range[0] and Range[1]

 Notes 1-3 apply to entire table

		Range[0] Values	Range	[1] Values	
Function	OP	Vref(ca) (% Vref(dq) (%	% of V _{DDQ}) % of V _{DDQ})	VREF(CA) (% of VDDQ) VREF(DQ) (% of VDDQ)		
		000000b: 15.0%	011010b: 30.5%	000000b: 32.9%	011010b: 48.5%	
		000001b: 15.6%	011011b: 31.1%	000001b: 33.5%	011011b: 49.1%	
		000010b: 16.2%	011100b: 31.7%	000010b: 34.1%	011100b: 49.7%	
		000011b: 16.8%	011101b: 32.3%	000011b: 34.7%	011101b: 50.3%(default)	
		000100b: 17.4%	011110b: 32.9%	000100b: 35.3%	011110b: 50.9%	
		000101b: 18.0%	011111b: 33.5%	000101b: 35.9%	011111b: 51.5%	
		000110b: 18.6%	100000b: 34.1%	000110b: 36.5%	100000b: 52.1%	
		000111b: 19.2%	100001b: 34.7%	000111b: 37.1%	100001b: 52.7%	
		001000b: 19.8%	100010b: 35.3%	001000b: 37.7%	100010b: 53.3%	
		001001b: 20.4%	100011b: 35.9%	001001b: 38.3%	100011b: 53.9%	
		001010b: 21.0%	100100b: 36.5%	001010b: 38.9%	100100b: 54.5%	
		001011b: 21.6%	100101b: 37.1%	001011b: 39.5%	100101b: 55.1%	
VREF Setting	OP[5:0]	001100b: 22.2%	100110b: 37.7%	001100b: 40.1%	100110b: 55.7%	
		001101b: 22.8%	100111b: 38.3%	001101b: 40.7%	100111b: 56.3%	
and MR 14		001110b: 23.4%	101000b: 38.9%	001110b: 41.3%	101000b: 56.9%	
		001111b: 24.0%	101001b: 39.5%	001111b: 41.9%	101001b: 57.5%	
		010000b: 24.6%	101010b: 40.1%	010000b: 42.5%	101010b: 58.1%	
		010001b: 25.1%	101011b: 40.7%	010001b: 43.1%	101011b: 58.7%	
		010010b: 25.7%	101100b: 41.3%	010010b: 43.7%	101100b: 59.3%	
		010011b: 26.3%	101101b: 41.9%	010011b: 44.3%	101101b: 59.9%	
		010100b: 26.9%	101110b: 42.5%	010100b: 44.9%	101110b: 60.5%	
		010101b: 27.5%	101111b: 43.1%	010101b: 45.5%	101111b: 61.1%	
	Ī	010110b: 28.1%	110000b: 43.7%	010110b: 46.1%	110000b: 61.7%	
		010111b: 28.7%	110001b: 44.3%	010111b: 46.7%	110001b: 62.3%	
		011000b: 29.3%	110010b: 44.9%	011000b: 47.3%	110010b: 62.9%	
		011001b: 29.9%	All Others: Reserved	011001b: 47.9%	All Others: Reserved	

Notes:

1. These values may be used for MR14 OP[5:0] and MR12 OP[5:0] to set the V_{REF(CA)} or V_{REF(DQ)} levels in the device.

2. The range may be selected in each of the MR14 or MR12 registers by setting OP[6] appropriately.

3. Each of the MR14 or MR12 registers represents either FSP[0] or FSP[1]. Two frequency setpoints each for CA and DQ are provided to allow for faster switching between terminatedand unterminated operation or between different high-frequency settings, whichmay use different terminations values.

Table 4-47: MR15 Register Information (MA[5:0] = 0Fh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
		Lower	-byte invert regi	ster for DQ calib	oration		

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

able 4-48: MR15 Op-code Bit Definition								
Feature	Туре	OP	Definition	Notes				
Lower-byte invert for DQ calibration	Write-only	OP[7:0]	The following values may be written for any operand OP[7:0] and will be applied to the corresponding DQ locations DQ[7:0] within a byte lane 0b: Do not invert 1b: Invert the DQ calibration patterns in MR32 andMR40 Default value for OP[7:0] = 55h	1–3				

Notes:

1. This register will invert the DQ Calibration pattern found in MR32 and MR40 for any singleDQ or any combination of DQ. Example: If MR15 OP[7:0] = 00010101b, then the DQcalibration patterns transmitted on DQ[7, 6, 5, 3, 1] will not be inverted, but the DQ calibrationpatterns transmitted on DQ[4, 2, 0] will be inverted.

2. DM[0] is not inverted and always transmits the "true" data contained in MR32 andMR40.

3. No data bus inversion (DBI) function is enacted during DQ read calibration, even if DBI isenabled in MR3-OP[6].

Table 4-49: MR15 Invert Register Pin Mapping

PIN	DQ0	DQ1	DQ2	DQ3	DMIO	DQ4	DQ5	DQ6	DQ7
MR15	OP0	OP1	OP2	OP3	No invert	OP4	OP5	OP6	OP7

Table 4-50: MR16 PASR Bank Mask (MA[5:0] = 010h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			PASR ba	ank mask			

Table 4-51: MR16 Op-Code Bit Definitions

Feature	Туре	OP	Definition
Bank[7:0] mask	Write-only	OP[7:0]	0b: Bank refresh enabled (default) 1b: Bank refresh disabled

OP[n]	Bank Mask	8-Bank SDRAM
0	xxxxxx1	Bank 0
1	xxxxxx1x	Bank 1
2	xxxxx1xx	Bank 2
3	xxxx1xxx	Bank 3
4	xxx1xxxx	Bank 4
5	xx1xxxxx	Bank 5
6	x1xxxxxx	Bank 6
7	1xxxxxx	Bank 7

Notes:

1. When a mask bit is asserted (OP[n] = 1), refresh to that bank is disabled.

2. PASR bank masking is on a per-channel basis; the two channels on the die may have differentbank masking.

Table 4-52: MR17 PASR Segment Mask (MA[5.:0] = 11h)

OP7	OP6	OP5	OP4		OP3	OP2	OP1	OP0
			PAS	SR segn	nent mask			

Table 4-53: MR17 PASR Segment Mask Definitions

Feature	Туре	OP	Definition
Segment[7:0] mask	Write-only	OP[7:0]	0b: Segment refresh enabled (default) 1b: Segment refresh disabled

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-54: MR17 PASR Segment Mask

		Segment				Density (pe	er channel)			
Segment	OP	Segment	1Gb	2Gb	3Gb	4Gb	6Gb	8Gb	12Gb	16Gb
		IVIASK	R[12:10]	R[13:11]	R[14:12]	R[14:12]	R[15:13]	R[15:13]	R[16:14]	R[16:14]
0	0	XXXXXXX1		000b						
1	1	XXXXXX1X					001b			
2	2	XXXXX1XX					010b			
3	3	XXXX1XXX					011b			
4	4	XXX1XXXX					100b			
5	5	XX1XXXXX	101b							
6	6	X1XXXXXX	110b 110b Not 110b Not 110b Not 110b							
7	7	1XXXXXXX	111b	111b	allowed	111b	allowed	111b	allowed	111b

Notes:

1. This table indicates the range of row addresses in each masked segment. "X" is "Don'tCare" for a particular segment.

2. PASR segment-masking is on a per-channel basis. The two channels on the die may havedifferent segment masking indual-channel devices.

3. For 3Gb, 6Gb, and 12Gb density per channel, OP[7:6] must always be LOW (= 00b).

Table 4-55: MR18 Register Information (MA[5:0]=12h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			DQS oscillato	or count - LSB			

Table 4-56: MR18 LSB DQS Oscillator Count

Notes 1–3 apply to entire table

Function	Туре	OP	Definition
DQS oscillatorcount (WR trainingDQS oscillator)	Read-only	OP[7:0]	0h–FFh LSB DRAM DQS oscillator count

Notes:

1. MR18 reports the LSB bits of the DRAM DQS oscillator count. The DRAM DQS oscillatorcount value is used to train DQS to the DQ data valid window. The value reported by DRAM in this mode register can be used by the memory controller to periodicallyadjust the phase of DQS relative to DQ.

2. Both MR18 and MR19 must be read (MRR) and combined to get the value of the DQSoscillator count.

3. The value in this register is reset each time an MPC command is issued to start in theDQS oscillator counter.

Table 4-57: MR19 Register Information (MA[5:0] = 13h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			DQS oscillato	r count – MSB			

Table 4-58: MR19 DQS Oscillator Count

Notes 1-3 apply to the entire table

Function	Туре	OP	Definition
DQS oscillatorcount – MSB (WRtraining DQS oscillator)	Read-only	OP[7:0]	0h–FFh MSB DRAM DQS oscillator count

Notes:

1. MR19 reports the MSB bits of the DRAM DQS oscillator count. The DRAM DQS oscillatorcount value is used to train DQS to the DQ data valid window. The value reported by the DRAM in this mode register can be used by the memory controller to periodically adjust the phase of DQS relative to DQ.

2. Both MR18 and MR19 must be read (MRR) and combined to get the value of the DQSoscillator count.

3. A new MPC[START DQS OSCILLATOR] should be issued to reset the contents of MR18/MR19.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-59: M	R20 Register	Information (I	MA[5:0] = 14h))			
OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
		Upper	r-bvte invert reai	ster for DQ calib	ration		

Table 4-60: MR20 Register Information

XIN 🕱 CUN

Notes 1–3 apply to entire table

Function	Туре	OP	Definition
Upper-byte invert for DQ calibration	Write-only	OP[7:0]	The following values may be written for any operand OP[7:0] and willbe applied to the corresponding DQ locations DQ[15:8] within a bytelane 0b: Do not invert 1b: Invert the DQ calibration patterns in MR32 and MR40 Default value for OP[7:0] = 55h

Notes:

1. This register will invert the DQ calibration pattern found in MR32 and MR40 for any singleDQ or any combination of DQ. For example, if MR20 OP[7:0] = 00010101b, the DQcalibration patterns transmitted on DQ[15, 14, 13, 11, 9] will not be inverted, but the DQcalibration patterns transmitted on DQ[12, 10, 8] will be inverted.

2. DM[1] is not inverted and always transmits the true data contained in MR32 and MR40.

3. No data bus inversion (DBI) function is enacted during DQ read calibration, even if DBI isenabled in MR3 OP[6].

Table 4-61: MR20 Invert Register Pin Mapping

Pin	DQ8	DQ9	DQ10	DQ11	DMI1	DQ12	DQ13	DQ14	DQ15
MR20	OP0	OP1	OP2	OP3	No invert	OP4	OP5	OP6	OP7

Table 4-62: MR21 Register Information (MA[5:0] = 15h)

OP7	OPG	OP5		003	002		
	OFU	OFJ	064	UF 5	OF 2	OF 1	OFU
			R	FU			

Table 4-63: MR22 Register Information (MA[5:0] = 16h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
ODTD fo	or x8_2ch	ODTD-CA	ODTE-CS	ODTE-CK		SOC ODT	

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Function	Туре	OP	Data	Notes
SOC ODT (controller ODT value for V _{OH} calibration)	Write-only	OP[2:0]	000b: Disable (default) 001b: $R_{ZQ}/1$ (Illegal if MR3 OP[0] = 0b) 010b: $R_{ZQ}/2$ 011b: $R_{ZQ}/3$ (Illegal if MR3 OP[0] = 0b) 100b: $R_{ZQ}/4$ 101b: $R_{ZQ}/5$ (Illegal if MR3 OP[0] = 0b) 110b: $R_{ZQ}/6$ (Illegal if MR3 OP[0] = 0b) 111b: RFU	1, 2, 3
ODTE-CK (CK ODT enabled for non-terminating rank)	Write-only	OP[3]	ODT bond PAD is ignored 0b: ODT-CK override disabled (default) 1b: ODT-CK override enabled	2, 3
ODTE-CS (CS ODT enabled for non-terminating rank)	Write-only	OP[4]	ODT bond PAD is ignored 0b: ODT-CS override disabled (default) 1b: ODT-CS override enabled	2, 3
ODTD-CA (CA ODT termination disable)	Write-only	OP[5]	ODT bond PAD is ignored 0b: CA ODT obeys ODT_CA bond pad (default) 1b: CA ODT disabled	2, 3
ODTD for x8_2ch (Byte)mode	Write-only	OP[7:6]	See Byte Mode section	

Notes:

1. All values are typical.

2. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MRaddress, or read from with an MRR command to this address.

3. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, for example, the set point determined by thestate of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive setpoint will be ignored by the device, and may be changed without affecting device operation.

Table 4-65: MR23 Register Information (MA[5:0] = 17h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0		
	DQS interval timer run-time setting								

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-66: MR23 Register Information Notes 1–2 apply to entire table

Function	Туре	OP	Data
DQS interval timer runtime	Write-only	OP[7:0]	0000000b: Disabled (default) 00000001b: DQS timer stops automatically at the 16 th clock aftertimer start 00000010b: DQS timer stops automatically at the 32 nd clock aftertimer start 00000011b: DQS timer stops automatically at the 48 th clock aftertimer start 00000100b: DQS timer stops automatically at the 64 th clock aftertimer start Through 00111111b: DQS timer stops automatically at the (63 × 16) th clockafter timer start 01XXXXXXb: DQS timer stops automatically at the 2048 th clock aftertimer start 10XXXXXXb: DQS timer stops automatically at the 4096 th clock aftertimer start

Notes:

1. MPC command with OP[6:0] = 1001101b (stop DQS Interval Oscillator) stops the DQS intervaltimer in the case of MR23 OP[7:0] = 00000000b.

2. MPC command with OP[6:0] = 1001101b (stop DQS Interval Oscillator) is illegal with validnonzero values in MR23 OP[7:0].

Table 4-67: MR24 Register Information (MA[5:0] = 18h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
TRR mode		TRR mode Ban		Unlimited MAC		MAC value	

Table 4-68: MR24 Register Information

Function	Туре	OP	Data	Notes
			000b: Unknown (OP[3] = 0) or Unlimited (OP[3] =1)	
			001b: 700K	
			010b: 600K	
MAC value	Read	OP[2:0]	011b: 500K	1 2
	Read	01 [2.0]	100b: 400K	1,2
			101b: 300K	
			110b: 200K	
			111b: Reserved	
I Inlimited MAC	Read	OP[3]	0b: OP[2:0] defines the MAC value	23
			1b: Unlimited MAC value	2, 0
			000b: Bank 0	
			001b: Bank 1	
			010b: Bank 2	
TRR mode Ban	Write	OP[6:4]	011b: Bank 3	
	, into		100b: Bank 4	
			101b: Bank 5	
			110b: Bank 6	
			111b: Bank 7	
TRR mode	Write	0P[7]	0b: Disabled (default)	
	write		1b: Enabled	

Notes:

1. Unknown means that the device is not tested for tMAC and pass/fail values are unknown.Unlimited means that there is no restriction on the number of activates betweenrefresh windows.

2. There is no restriction to the number of activates.

3. MR24 OP[2:0] set to 000b.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN	
-----	--

Table 4-69: MR25 Register Information (MA[5:0] = 19h)									
OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0		
Bank 7	Bank 6	Bank 5	Bank 4	Bank 3	Bank 2	Bank 1	Bank 0		

Table 4-70: MR25 Register Information

Function	Туре	OP	Data
	Road only		0b: PPR resource is not available
FFRiesources	Read-only	UP[7.0]	1b: PPR resource is available

Note:

1. When OP[n] = 0, there is no PPR resource available for that bank. When OP[n] = 1, there is a PPR resource available for that bank, and PPR can be initiated by the controller.

Table 4-71: MR26:29 Register Information (MA[5:0] = 1Ah–1Fh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
Reserved for future use								

Table 4-72: MR30 Register Information (MA[5:0] = 1Eh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
Valid 0 or 1								

Table 4-73: MR30 Register Information

Function	Туре	OP	Data
SDRAM will ignore	Write-only	OP[7:0]	Don't care

Note:

1. This register is reserved for testing purposes. The logical data values written to OP[7:0]will have no effect on SDRAM operation; however, timings need to be observed as forany other MR access command.

Table 4-74: MR31 Register Information (MA[5:0] = 1Fh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			Reserved for	or future use			

Table 4-75: MR32 Register Information(MA[5:0] = 20h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
		DQ	calibration patte	ern A (default = 5	iAh)		

Table 4-76: MR32 Register Information

Function	Туре	OP	Data	Notes
Return DQ calibration pattern MR32 + MR40	Write-only	OP[7:0]	Xb: An MPC command issued with OP[6:0] = 1000011b causes the device to return the DQ calibration pattern contained in this register and (followed by) the contents of MR40. A default pattern 5Ah is loaded at power-up or reset, or the pattern may be overwritten with a MRW to this register. The contents of MR15 and MR20 will invert the MR32/MR40 data pattern for a given DQ (see MR15/MR20 for more information).	1, 2, 3

Notes:

1. The patterns contained in MR32 and MR40 are transmitted on DQ[15:0] and DMI[1:0]when read DQ calibration is initiated via an MPC command. The pattern is transmittedserially on each data lane and organized little endian such that the low-order bit in abyte is transmitted first. If the data pattern is 27H, the first bit transmitted is a 1 followedby 1, 1, 0, 0, 1, 0, and 0. The bit stream will be 00100111.

2. MR15 and MR20 may be used to invert the MR32/MR40 data pattern on the DQ pins.

See MR15 and MR20 for more information. Data is never inverted on the DMI[1:0] pins.

3. The data pattern is not transmitted on the DMI[1:0] pins if DBI-RD is disabled via MR3OP[6].

4. No DATA BUS INVERSION (DBI) function is enacted during read DQ calibration, even ifDBI is enabled in MR3 OP[6].

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-77: M	Table 4-77: MR33:38 Register Information (MA[5:0] = 21h–26h)									
OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0										
	Do not use									

Table 4-78: MR39 Register Information (MA[5:0] = 27h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			0 or 1				

Table 4-79: MR30 Register Information

XIN 🕱 CUN

Function	Туре	OP	Data
SDRAM will ignore	Write-only	OP[7:0]	Don't care

Note:

1. This register is reserved for testing purposes. The logical data values written to OP[7:0]will have no effect on SDRAM operation; however, timings need to be observed as forany other MR access command.

Table 4-80: MR40 Register Information (MA[5:0] = 28h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
		DQ	calibration patte	ern B (default = 3	BCh)		

Table 4-81: MR40 Register Information

Function	Туре	OP	Data	Notes
Return DQ calibration pattern MR32 + MR40	Write-only	OP[7:0]	Xb: A default pattern 3Ch is loaded at power-up or reset, or the pattern may be overwritten with a MRW to this register. See MR32 for more information.	1, 2, 3

Notes:

1. The pattern contained in MR40 is concatenated to the end of MR32 and transmitted onDQ[15:0] and DMI[1:0] when DQ read calibration is initiated via an MPC command. Thepattern is transmitted serially on each data lane and organized little endian such thatthe low-order bit in a byte is transmitted first. If the data pattern in MR40 is 27H, thefirst bit transmitted will be a 1, followed by 1, 1, 0, 0, 1, 0, and 0. The bit stream will be00100111.

2. MR15 and MR20 may be used to invert the MR32/MR40 data patterns on the DQ pins.See MR15 and MR20 for more information. Data is never inverted on the DMI[1:0] pins.

3. The data pattern is not transmitted on the DMI[1:0] pins if DBI-RD is disabled via MR3OP[6].

4. No data bus inversion (DBI) function is enacted during DQ read calibration, even if DBI isenabled in MR3 OP[6].

Table 4-82: MR41:47 Register Information (MA[5:0] = 29h–2Fh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			Do no	ot use			

Table 4-83: MR48:63 Register Information (MA[5:0] = 30h-3Fh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0			
	Reserved for future use									

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.9 Commands and Timing

Commands transmitted on the CA bus are encoded into two parts and are latched ontwo consecutive rising edges of the clock. This is called 2-tick CA capture because eachcommand requires two clock edges to latch and decode the entire command.

Truth Tables

Truth tables provide complementary information to the state diagram. They also clarifydevice behavior and applicable restrictions when considering the actual state of thebanks.

Unspecified operations and timings are illegal. To ensure proper operation after an illegalevent, the device must be either reset by asserting the RESET_n command or powereddown and then restarted using the specified initialization sequence before normaloperation can continue.

CKE signal has to be held HIGH when the commands listed in the command truth tableinput.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Table 4-84: Command Truth Table

Commands are transmitted to the device across a six-lane interface and use CK, CKE, and CS to control the capture of transmitted data

		SDR CA Pins									
Command	CS	CA0	CA1	CA2	CA3	CA4	CA5	CK Edge	Notes		
MRW-1	н	Ľ	Н	н	L	L	OP7	_fT	1, 11		
	L	MA0	MA1	MA2	MA3	MA4	MA5	f2]]		
MRW-2	н	L	н	н	L	н	OP6	_f1	1, 11		
	L	OP0	OP1	OP2	OP3	OP4	OP5	1 2	1		
MRR-1	н	L	н	н	н	L	V	_ f T	1, 2, 12		
	L	MA0	MA1	MA2	MA3	MA4	MA5	2			
REFRESH	Н	L	L	L	Н	L	AB	-FT	1, 2, 3, 4		
(all/per bank)	L	BA0	BA1	BA2	V	V	V	f2			
ENTER SELF RE-	н	L	L	E	Н	н	V	_fi	1, 2		
FRESH	L			,	V			_ F 2			
ACTIVATE-1	н	Н	L	R12	R13	R14	R15	_FT	1, 2, 3, 11		
	L	BA0	BA1	BA2	R16	R10	R11	_ f 2			
ACTIVATE-2	н	Н	н	R6	R7	R8	R9	_FT	1, 11		
	L	RO	R1	R2	R3	R4	R5				
WRITE-1	н	L	L	н	L	L,	BL	_ন্ন	1, 2, 3, 6,		
	L	BA0	BA1	BA2	V	C9	AP		7, 9		
EXIT SELF RE-	н	L	L	н	L	н	V	_FI	1, 2		
FRESH	L				v			7	1		
MASK WRITE-1	н	L	L	н	Н	L	BL	_FT	1, 2, 3, 5,		
	L	BA0	BA1	BA2	v	C9	AP	T	6, 7, 9		
RFU	н	L	L	н	н	н	V	_ F T	1, 2		
l t	L	<u> </u>			v			2	1		
RFU	н	L	н	L	н	L	V	2	1, 2		
Ī	L	v						2			
RFU	н	L	н	L	н	н	v		1, 2		
	L	8	V					_ f 2]			
READ-1	н	L	н	L	L	L	BL	_FT	1, 2, 3, 6,		
	L	BA0	BA1	BA2	v	C9	AP		7, 9		
CAS-2	н	L	н	L	L	н	C8	_ - FT	1, 8, 9		
(WRITE-2, MASKED WRITE-2, READ-2, MRR-2, MPC (except NOP)	L	C2	C3	C4	C5	C6	C7	_ _ F]			
PRECHARGE	н	L	L	L	L	н	AB	-F1	1, 2, 3, 4		
(all/per bank)	L	BA0	BA1	BA2	V	V	V	2	1		
MPC	н	L	L	L	L	L	OP6	-FT	1, 2, 13		
(TRAIN, NOP)	L	OP0	OP1	OP2	OP3	OP4	OP5	1	1		
DESELECT	L				x			_FT	1, 2		

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

- 1. All commands except for DESELECT are two clock cycles and are defined by the currentstate of CS and CA[5:0] at the rising edge of the clock. DESELECT command is one clockcycle and is not latched by the device.
- 2. V = H or L (a defined logic level); X = "Don't Care," in which case CS, CK_t, CK_c, andCA[5:0] can be floated.
- 3. Bank addresses BA[2:0] determine which bank is to be operated upon.
- 4. AB HIGH during PRECHARGE or REFRESH commands indicate the command must be applied oall banks, and the bank addresses are "Don't Care."
- 5. MASK WRITE-1 command only supports BL16. For MASK WRITE-1 commands, CA5 mustbe driven LOW on the first rising clock cycle (R1).
- 6. AP HIGH during a WRITE-1, MASK WRITE-1, or READ-1 command indicates that an autoprecharge will occur to the bank the command is operating on. AP LOW indicates that autoprecharge will occur and the bank will remain open upon completion of the command.
- 7. When enabled in the mode register, BL HIGH during a WRITE-1, MASK-WRITE-1, orREAD-1 command indicates the burst length should be set on-the-fly to BL = 32; BL LOWduring one of these commands indicates the burst length should be set on-the-fly to BL= 16. If on-the-fly burst length is not enabled in the mode register, this bit should bedriven to a valid level and is ignored by the device.
- 8. For CAS-2 commands (WRITE-2, MASK WRITE-2, READ-2, MRR-2, or MPC (only WRITEFIFO, READ-FIFO, and READ DQ CALIBRATION)), C[1:0] are not transmitted on the CA[5:0] bus and are assumed to be zero. Note that for CAS-2 WRITE-2 or CAS-2 MASKWRITE-2 command, C[3:2] must be driven LOW.
- 9. WRITE-1, MASK-WRITE-1, READ-1, MODE REGISTER READ-1, or MPC (only WRITE-FIFO,READ-FIFO, and READ DQ CALIBRATION) command must be immediately followed byCAS-2 command consecutively without any other command in between. WRITE-1, MASKWRITE-1, READ-1, MRR-1, or MPC (only WRITE-FIFO, READ-FIFO, and READ DQ CALIBRATION)command must be issued first before issuing CAS-2 command. MPC (only STARTand STOP DQS OSCILLATOR, ZQCAL START and LATCH) commands do not require CAS-2command; they require two additional DES or NOP commands consecutively before issuingany other commands.
- 10. The ACTIVATE-1 command must be followed by the ACTIVATE-2 command consecutively without any other command between them. The ACTIVATE-1 command must be issued prior to the ACTIVATE-2 command. When the ACTIVATE-1 command is issued, the ACTIVATE-2 command must be issued before issuing another ACTIVATE-1 command.
- 11. The MRW-1 command must be followed by the MRW-2 command consecutively withoutany other command between them. The MRW-1 command must be issued prior to theMRW-2 command.
- 12. The MRR-1 command must be followed by the CAS-2 command consecutively withoutany other commands between them. The MRR-1 command must be issued prior to theCAS-2 command.
- 13. The MPC command for READ or WRITE TRAINING operations must be followed by theCAS-2 command consecutively without any other commands between them. The MPCcommand must be issued prior to the CAS-2 command.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.10 ACTIVATE Command

The ACTIVATE command must be executed before a READ or WRITE command can beissued. The ACTIVATE command is issued in two parts: The bank and upper-row addresses are entered with activate-1 and the lower-row addresses are entered with ACTIVATE-2. ACTIVATE-1 and ACTIVATE-2 are executed by strobing CS HIGH while settingCA[5:0] at valid levels (see Command table) at the rising edge of CK.

The bank addresses (BA[2:0]) are used to select the desired bank. The row addresses(R[15:0]) are used to determine which row to activate in the selected bank. The ACTIVATE-2 command must be applied before any READ or WRITE operation can be executed. The device can accept a READ or WRITE command at time 'RCD after the ACTIVATE-2 command is sent. After a bank has been activated, it must be precharged toclose the active row before another ACTIVATE-2 command can be applied to the samebank. The bank active and precharge times are defined as 'RAS and 'RP, respectively.

The minimum time interval between successive ACTIVATE-2 commands to the samebank is determined by the row cycle time of the device (^tRC). The minimum time intervalbetween ACTIVATE-2 commands to different banks is ^tRRD.

Certain restrictions must be observed for bank ACTIVATE and REFpb operations.

- Four-activate window (^tFAW): No more than 4 banks may be activated (or refreshed,in the case of REFpb) per channel in a rolling ^tFAW window. Convert to clocks by dividing^tFAW[ns] by ^tCK[ns] and rounding up to the next integer value. As an example of the rolling window, if RU[(^tFAW/^tCK)] is 64 clocks, and an ACTIVATE command is issued on clock N, no more than three additional ACTIVATE commands may be issuedbetween clock N + 1 and N + 63. REFpb also counts as bank activation for thepurposes of ^tFAW.
- 8-bank per channel, precharge all banks (AB) allowance: ^tRP for a PRECHARGE ALLBANKS command for an 8-bank device must equal ^tRPab, which is greater than ^tRPpb.

Figure 4-2: ACTIVATE Command

Note:

1. A PRECHARGE command uses 'RPab timing for all-bank precharge and 'RPpb timing forsingle-bank precharge. In this figure, 'RP is used to denote either all-bank precharge ora single-bank precharge. 'CCD = MIN, 1.5nCK postamble, 533 MHz < clock frequency ≤800 MHz, ODT worst timing case.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 l/O))

Figure 4-3: ^tFAW Timing

Note:

4.11 Read and Write Access Modes

After a bank has been activated, a READ or WRITE command can be executed. This isaccomplished by asserting CKE asynchronously, with CS and CA[5:0] set to the properstate (see Command Truth Table) on the rising edge of CK.

The device provides a fast column access operation. A single READ or WRITE commandwill initiate a burst READ or WRITE operation, where data is transferred to/from the deviceon successive clock cycles. Burst interrupts are not allowed; however, the optimalburst length may be set on-the-fly (see Command Truth Table).

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.12 Preamble and Postamble

The DQS strobe for the device requires a preamble prior to the first latching edge (therising edge of DQS_t with data valid), and it requires a postamble after the last latchingedge. The preamble and postamble options are set via MODE REGISTER WRITE commands.

The read preamble is two ^tCK in length and is either static or has one clock toggle beforethe first latching edge. The read preamble option is enabled via MRW to MR1 OP[3] (0 =Static; 1 = Toggle).

The read postamble has a programmable option to extend the postamble by 1nCK(^tRPSTE). The extended postamble option is enabled via MRW to MR1 OP[7] (0 =0.5nCK; 1 = 1.5nCK).

Figure 4-4: DQS Read Preamble and Postamble – Toggling Preamble and 0.5nCK Postamble

Notes:

- 1. BL = 16, Preamble = Toggling, Postamble = 0.5nCK.
- 2. DQS and DQ terminated Vssq.
- 3. DQS_t/DQS_c is "Don't Care" prior to the start of ^tRPRE. No transition of DQS is implied,as DQS_t/DQS_c can be HIGH,LOW, or High-Z prior to ^tRPRE.

Figure 4-5: DQS Read Preamble and Postamble – Static Preamble and 1.5nCK Postamble

- 1. BL = 16, Preamble = Static, Postamble = 1.5nCK (extended).
- 2. DQS and DQ terminated V_{SSQ}.
- 3. DQS_t/DQS_c is "Don' t Care" prior to the start of ^tRPRE. No transition of DQS is implied,as DQS_t/DQS_c can be HIGH, LOW, or High-Z prior to ^tRPRE.

8GB eMMC+ 8Gb LPDDR4 SDRAM

Notes:

1. BL = 16, Postamble = 0.5nCK.

XIN 🕱 CUN

- 2. DQS and DQ terminated Vssq.
- 3. DQS_t/DQS_c is "Don' t Care" prior to the start of ^tWPRE. No transition of DQS is implied,as DQS_ t/DQS_c can be HIGH,LOW, or High-Z prior to ^tWPRE.

8GB eMMC+ 8Gb LPDDR4 SDRAM

- 1. BL = 16, Postamble = 1.5nCK.
- 2. DQS and DQ terminated Vssq.
- 3. DQS t/DQS c is "Don' t Care" prior to the start of ¹WPRE. No transition of DQS is implied, as DQS t/DQS c can be HIGH,LOW, or High-Z prior to ^tWPRE.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.13 Burst READ Operation

A burst READ command is initiated with CKE, CS, and CA[5:0] asserted to the properstate on the rising edge of CK, as defined by the Command Truth Table. The commandaddress bus inputs determine the starting column address for the burst. The two loworderaddress bits are not transmitted on the CA bus and are implied to be 0; therefore, the starting burst address is always a multiple of four (that is, 0x0, 0x4, 0x8, 0xC).

The READ latency (RL) is defined from the last rising edge of the clock that completes aREAD command (for example, the second rising edge of the CAS-2 command) to therising edge of the clock from which the ^tDQSCK delay is measured. The first valid data isavailable RL ×^tCK + ^tDQSCK + ^tDQSQ after the rising edge of clock that completes aREAD command.

The data strobe output is driven ^tRPRE before the first valid rising strobe edge. The firstdata bit of the burst is synchronized with the first valid (post-preamble) rising edge of the data strobe. Each subsequent data-out appears on each DQ pin, edge-aligned with the data strobe. At the end of a burst, the DQS signals are driven for another half cyclepostamble, or for a 1.5-cycle postamble if the programmable postamble bit is set in themode register. The RL is programmed in the mode registers. Pin timings for the datastrobe are measured relative to the cross-point of DQS_t and DQS_c.

Figure 4-8: Burst Read Timing

- 1. BL = 32 for column n, BL = 16 for column m, RL = 14, Preamble = Toggle, Postamble =0.5nCK, DQ/DQS: Vssq termination.
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕸 CUN

Notes:

- 1. BL=16, Read preamble = Toggle, Read postamble = 0.5nCK, Write preamble = 2nCK, Write postamble = 0.5nCKDQ/DQS: Vssq termination.
- 2. D_{OUT} n = data-out from column n and D_{IN} n = data-in to column n.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-10: Seamless Burst Read

Don't Care

- 1. BL = 16, ^tCCD = 8, Preamble = Toggle, Postamble = 0.5nCK, DQ/DQS: V_{SSQ} termination.
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Read Timing Figure 4-11: Read Timing

Notes:

- 1. BL = 16, Preamble = Toggling, Postamble = 0.5nCK.
- 2. DQS, DQ, and DMI terminated Vssq.
- 3. Output driver does not turn on before an endpoint of ${}^t\text{LZ}(\text{DQS})$ and ${}^t\text{LZ}(\text{DQ}).$
- 4. Output driver does not turn off before an endpoint of ^tHZ(DQS) and ^tHZ(DQ).

^tLZ(DQS), ^tLZ(DQ), ^tHZ(DQS), ^tHZ(DQ) Calculation

^tHZ and ^tLZ transitions occur in the same time window as valid data transitions. Theseparameters are referenced to a specific voltage level that specifies when the device outputis no longer driving ^tHZ(DQS) and ^tHZ(DQ), or begins driving ^tLZ(DQS) and ^tLZ(DQ). This section shows a method to calculate the point when the device is no longerdriving ^tHZ(DQS) and ^tHZ(DQ), or begins driving ^tLZ(DQS) and ^tLZ(DQ), by measuringthe signal at two different voltages. The actual voltage measurement points arenot critical as long as the calculation is consistent. The parameters ^tLZ(DQS), ^tLZ(DQ), ^tHZ(DQS), and ^tHZ(DQ) are defined as single ended.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

^tLZ(DQS) and ^tHZ(DQS) Calculation for ATE (Automatic Test Equipment)

Figure 4-12: ^tLZ(DQS) Method for Calculating Transitions and Endpoint

XIN 🕱 CUN

Notes:

- 1. Conditions for calibration: Pull down driver R_{ON} = 40 ohm, V_{OH} = $V_{DDQ} \times 0.5$.
- 2. Termination condition for DQS_t and DQS_C = 50 ohm to V_{SSQ} .
- 3. The V_{OH} level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances.Use the actual V_{OH} value for ^tHZ and ^tLZ measurements.

Figure 4-13: ^tHZ(DQS) Method for Calculating Transitions and Endpoint

CK_t – CK_c crossing at the second CAS-2 of READ command

Notes:

1. Conditions for calibration: Pull down driver R_{ON} = 40 ohm, V_{OH} = $V_{DDQ} \times 0.5$.

- 2. Termination condition for DQS_t and DQS_C = 50 ohm to V_{SSQ} .
- 3. The VOH level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual VOH value for tHZ and tLZ measurements.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Measured Parameter	Measured Parameter Symbol	Vsw1	Vsw2	Unit
DQS_c Low-Z time from CK_t, CK_c	^t LZ(DQS)	0.4 × V _{ОН}	0.6 × V _{ОН}	Ň
DQS_c High-Z time from CK_t, CK_c	^t HZ(DQS)	$0.4 \times V_{OH}$	0.6 × V _{он}	V

^tLZ(DQ) and ^tHZ(DQ) Calculation for ATE (Automatic Test Equipment) Figure 4-14: ^tLZ(DQ) Method for Calculating Transitions and Endpoint

- 1. Conditions for calibration: Pull down driver R_{ON} = 40 ohm, V_{OH} = $V_{DDQ} x 0.5$.
- 2. Termination condition for DQ and DMI = 50 ohm to V_{SSQ} .
- 3. The V_{OH} level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances.Use the actual V_{OH} value for ^tHZ and ^tLZ measurements.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-15: ^tHZ(DQ) Method for Calculating Transitions and Endpoint

XIN 🕱 CUN

Notes:

- 1. Conditions for calibration: Pull down driver R_{ON} = 40 ohm, V_{OH} = $V_{DDQ} \times 0.5$.
- 2. Termination condition for DQ and DMI = 50 ohm to V_{SSQ} .
- 3. The V_{OH} level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual V_{OH} value for ${}^{t}HZ$ and ${}^{t}LZ$ measurements.

Table 4-86: Reference Voltage for ^tLZ(DQ), ^tHZ(DQ) Timing Measurements

Measured Parameter	Measured Parameter Symbol	Vsw1	Vsw2	Unit
DQ Low-Z time from CK_t, CK_c	^t LZ(DQ)	0.4 × V _{ОН}	0.6 × V _{ОН}	N
DQ High-Z time from CK_t, CK_c	^t HZ(DQ)	0.4 × V _{ОН}	0.6 × V _{ОН}	V

XIN 🕱 CUN

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.14 Burst WRITE Operation

A burst WRITE command is initiated with CKE, CS, and CA[5:0] asserted to the properstate at the rising edge of CK, as defined by the Command Truth Table. Column addressesC[3:2] should be driven LOW for burst WRITE commands, and column addressesC[1:0] are not transmitted on the CA bus and are assumed to be zero so that the startingcolumn burst address is always aligned with a 32-byte boundary. The WRITE latency(WL) is defined from the last rising edge of the clock that completes a WRITE command(for example, the second rising edge of the CAS-2 command) to the rising edge of theclock from which ^tDQSS is measured. The first valid latching edge of DQS must be drivenWL ×^t CK + ^tDQSS after the rising edge of clock that completes a WRITE command.

The device uses an unmatched DQS DQ path for lower power, so the DQS strobe mustarrive at the SDRAM ball prior to the DQ signal by 'DQS2DQ. The DQS strobe outputmust be driven 'WPRE before the first valid rising strobe edge. The 'WPRE preamble isrequired to be 2 ×^tCK at any speed ranges. The DQS strobe must be trained to arrive atthe DQ pad latch center-aligned with the DQ data. The DQ data must be held forTdiVW, and the DQS must be periodically trained to stay roughly centered in the TdiVW.Burst data is captured by the SDRAM on successive edges of DQS until the 16- or 32-bitdata burst is complete. The DQS strobe must remain active (toggling) for 'WPST (writepostamble) after the completion of the burst WRITE. After a burst WRITE operation,'WR must be satisfied before a PRECHARGE command to the same bank can be issued.Signal input timings are measured relative to the cross point of DQS_t and DQS_c.

Figure 4-16: Burst WRITE Operation

Notes:

1. BL = 16, Write postamble = 0.5nCK, DQ/DQS: V_{SSQ} termination.

- 2. D_{IN} n = data-in to column n.
- 3. $^t\!WR$ starts at the rising edge of CK after the last latching edge of DQS.
- 4. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-17: Burst Write Followed by Burst Read

XIN 🕱 CUN

Don't Care

- 1. BL = 16, Write postamble = 0.5nCK, DQ/DQS: V_{SSQ} termination.
- 2. D_{IN} n = data-in to column n.
- 3. The minimum number of clock cycles from the burst WRITE command to the burst READcommand for any bank is [WL + 1 + BL/2 + RU(^tWTR/^tCK)].
- 4. ^tWTR starts at the rising edge of CK after the last latching edge of DQS.
- 5. DES commands are shown for ease of illustration; other commands may be valid atthese times.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Write Timing

Don't Care

Notes:

1. BL = 16, Write postamble = 0.5nCK.

2. D_{IN} n = data-in to column n.

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

^tWPRE Calculation for ATE (Automatic Test Equipment)

XIN 🖾 CUN

Figure 4-19: Method for Calculating ^tWPRE Transitions and Endpoints

Note:

1. Termination condition for DQS_t, DQS_c, DQ, and DMI = 50 ohm to V_{SSQ}.

Table 4-87: Method for Calculating ^tWPRE Transitions and Endpoints

Measured Parameter Symbol		Vsw1	Vsw2	Unit
DQS_t, DQS_c	^t WPRE	VIHL AC × 0.3	Vihi ac × 0.7	V
differential write preamble				-

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

^tWPST Calculation for ATE (Automatic Test Equipment) Figure 4-20: Method for Calculating ^tWPST Transitions and Endpoints

Notes:

- 1. Termination condition for DQS_t, DQS_c, DQ, and DMI = 50 ohm to V_{SSQ}.
- 2. Write postamble: 0.5^tCK
- 3. The method for calculating differential pulse widths for 1.5^tCK postamble is same as0.5^tCK postamble.

Table 4-88: Reference Voltage for ^tWPST Timing Measurements

Measured Parameter Symbol		Vsw1	Vsw2	Unit
DQS_t, DQS_c differential write postamble	^t WPST	–(V _{IHL_AC} × 0.7)	–(VIHL_AC × 0.3)	V

XIN 🕱 CUN

4.15MASK WRITE Operation

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

The device requires that WRITE operations that include a byte mask anywhere in theburst sequence must use the MASK WRITE command. This allows the device to implementefficient data protection schemes based on larger data blocks. The MASKWRITE-1 command is used to begin the operation, followed by a CAS-2 command. AMASKED WRITE command to the same bank cannot be issued until ^tCCDMW later, toallow the device to finish the internal READ-MODIFY-WRITE operation. One datamask-invert (DMI) pin is provided per byte lane, and the data-mask-invert timingsmatch data bit (DQ) timing. See Data Mask Invert for more information on the use of the DMI signal.

Figure 4-21: MASK WRITE Command – Same Bank

- 1. BL = 16, Write postamble = 0.5nCK, DQ/DQS: V_{SSQ} termination.
- 2. D_{IN} n = data-in to column n.
- 3. Mask-write supports only BL16 operations. For BL32 configuration, the system needs toinsert only 16-bit wide data for MASKED WRITE operation.
- 4. DES commands are shown for ease of illustration; other commands may be valid atthese time.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-22: MASK WRITE Command – Different Bank

XIN 🕱 CUN

Notes:

- 1. BL = 16, DQ/DQS/DMI: V_{SSQ} termination.
- 2. D_{IN} n = data-in to column n.
- 3. Mask-write supports only BL16 operations. For BL32 configuration, the system needs toinsert only 16-bit wide data for MASKED WRITE operation.
- 4. DES commands are shown for ease of illustration; other commands may be valid atthese time.

Mask Write Timing Constraints for BL16

Table 4-89: Same Bank (ODT Disabled)

Next CMD Current CMD	ACTIVE	READ (BL = 16 or 32)	WRITE (BL = 16 or 32)	MASK WRITE	PRECHARGE
ACTIVE	lllegal	RU(^t RCD/ ^t CK)	RU(^t RCD/ ^t CK)	RU(^t RCD/ ^t CK)	RU(^t RAS/ ^t CK)
READ (with BL = 16)	Illegal	8 ¹	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 - WL + ^t WPRE + RD(^t RPST)	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 - WL + ^t WPRE + RD(^t RPST)	BL/2 + MAX{(8,RU(^t RTP/ ^t CK)} - 8
READ (with BL = 32)	Illegal	16 ²	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 - WL + ^t WPRE + RD(^t RPST)	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 - WL + ^t WPRE + RD(^t RPST)	BL/2 + MAX{(8,RU(^t RTP/ ^t CK)} - 8
WRITE (with BL = 16)	Illegal	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	8 ¹	^t CCDMW ³	WL + 1 + BL/2 + RU(^t WR/ ^t CK)
WRITE (with BL = 32)	Illegal	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	16 ²	^t CCDMW + 8 ⁴	WL + 1 + BL/2 + RU(^t WR/ ^t CK)
MASK WRITE	lllegal	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	^t CCD	^t CCDMW ³	WL + 1 + BL/2 + RU(^t WR/ ^t CK)
PRECHARGE	RU(^t RP/ ^t CK), RU(^t RPab/ ^t CK)	lllegal	Illegal	Illegal	4

Notes:

1. In the case of BL = 16, ^tCCD is 8 \times ^tCK.

2. In the case of BL = 32, ^tCCD is 16 \times ^tCK.

3. ^tCCDMW = 32 × ^tCK (4 × ^tCCD at BL = 16).

4. WRITE with BL = 32 operation is 8 \times ^tCK longer than BL = 16.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Next CMD Current CMD	ACTIVE	READ (BL = 16 or 32)	WRITE (BL = 16 or 32)	MASK WRITE	PRECHARGE
ACTIVE	RU(^t RRD/ ^t CK)	4	4	4	2 ²
READ (with BL = 16)	4	81	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 - WL + ^t WPRE + RD(^t RPST)	RL + RU('DQSCK(MAX)/ 'CK) + BL/2 - WL + 'WPRE + RD('RPST)	2 ²
READ (with BL = 32)	4	16²	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 - WL + ^t WPRE + RD(^t RPST)	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 - WL + ^t WPRE + RD(^t RPST)	2 ²
WRITE (with BL = 16)	4	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	8 ¹	8 ¹	2 ²
WRITE (with BL = 32)	4	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	16 ²	16 ²	2 ²
MASK WRITE	4	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	8 ¹	81	2 ²
PRECHARGE	4	4	4	4	4

Notes:

1. In the case of BL = 16, ^tCCD is 8 \times ^tCK

2. In the case of BL = 32, ^tCCD is 16 \times ^tCK

Table 4-91: Same Bank (ODT Enabled)

Next CMD Current CMD	ACTIVE	READ (BL = 16 or 32)	WRITE (BL = 16 or 32)	MASK WRITE	PRECHARGE
ACTIVE	Illegal	RU(^t RCD/ ^t CK)	RU(^t RCD/ ^t CK)	RU(^t RCD/ ^t CK)	RU(^t RAS/ ^t CK)
READ (with BL = 16)	Illegal	8 ¹	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	BL/2 + MAX{(8,RU(^t RTP/ ^t CK)} - 8
READ (with BL = 32)	Illegal	16 ²	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	BL/2 + MAX{(8,RU(^t RTP/ ^t CK)} - 8
WRITE (with BL = 16)	lllegal	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	8 ¹	^t CCDMW ³	WL + 1+ BL/2 + RU(^t WR/ ^t CK)
WRITE (with BL = 32)	lllegal	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	16 ²	^t CCDM+8 ⁴	WL + 1+ BL/2 + RU(^t WR/ ^t CK)
MASK WRITE	lllegal	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	^t CCD	^t CCDMW ³	WL + 1+ BL/2 + RU(^t WR/ ^t CK)
PRECHARGE	RU(^t RP/ ^t CK), RU(^t RPab/ ^t CK)	lllegal	Illegal	Illegal	4

Notes:

1. In the case of BL = 16, ^tCCD is 8 \times ^tCK.

2. In the case of BL = 32, ^tCCD is 16 \times ^tCK.

3. ^tCCDMW = 32 × ^tCK (4 × ^tCCD at BL = 16).

4. WRITE with BL = 32 operation is 8 \times ^tCK longer than BL = 16.

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Table 4-92: Different Bank (ODT Enabled)								
Next CMD Current CMD	ACTIVE	READ (BL = 16 or 32)	WRITE (BL = 16 or 32)	MASK WRITE	PRECHARGE			
ACTIVE	RU(^t RRD/ ^t CK)	4	4	4	2 ²			
READ (with BL = 16)	4	81	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	22			
READ (with BL = 32)	4	16²	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + RD(^t RPST) - ODTLon - RD(^t ODTon(MIN)/ ^t CK)	22			
WRITE (with BL = 16)	4	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	8 ¹	8 ¹	2 ²			
WRITE (with BL = 32)	4	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	16²	16 ²	2 ²			
MASK WRITE	4	WL + 1+ BL/2 + RU(^t WTR/ ^t CK)	8 ¹	8 ¹	2 ²			
PRECHARGE	4	4	4	4	4			

Notes:

1. In the case of BL = 16, ^tCCD is 8 \times ^tCK.

2. In the case of BL = 32, ^tCCD is 16 \times ^tCK
8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.16Data Mask and Data Bus Inversion (DBI [DC]) Function

Data mask (DM) is supported for WRITE operations and the data bus inversion DBI(DC) is supported for READ, WRITE, MASK WRITE, MRR, and MRW operations. DMand DBI (DC) functions are supported with byte granularity. DBI (DC) for READ operations(READ, MRR) can be enabled or disabled via MR3 OP[6]. DBI (DC) for WRITE operations(WRITE, MASK WRITE, MRW) can be enabled or disabled via MR3 OP[7]. DMfor MASK WRITE operations can be enabled or disabled via MR13 OP[5]. The device hasone data mask inversion (DMI) pin per byte and a total of two DMI pins per channel. The DMI signal is a bidirectional DDR signal, is sampled with the DQ signals, and iselectrically identical to a DQ signal.

There are eight possible states for the device with the DM and DBI (DC) functions.

Table 4-93: Function Behavior of DMI Signal During WRITE, MASKED WRITE, and READ Operations

					DN	II Signal				
DM Function	Write DBI (DC)	Read DBI (DC)	During WRITE	During MASKED WRITE	During READ	During MPC[WRIT E-FIFO]	During MPC[READFIFO]	During MPC[READ DQ CAL]		
Disabled	Disabled	Disabled	Don't Care ¹	lllegal ¹ , ³	High-Z ²	Don't Care ¹	High-Z ²	High-Z ²		
Disabled	Enabled	Disabled	DBI (DC) ⁴	lllegal ³	High-Z ²	Train ⁹	Train ¹⁰	Train ¹¹		
Disabled	Disabled	Enabled	Don't Care ¹	lllegal ³	DBI (DC) ⁵	Train ⁹	Train ¹⁰	Train ¹¹		
Disabled	Enabled	Enabled	DBI (DC) ⁴	lllegal ³	DBI (DC) ⁵	Train ⁹	Train ¹⁰	Train ¹¹		
Enabled	Disabled	Disabled	Don't Care ⁶	DM ⁷	High-Z ²	Train ⁹	Train ¹⁰	Train ¹¹		
Enabled	Enabled	Disabled	DBI (DC) ⁴	DBI (DC) ⁸	High-Z ²	Train ⁹	Train ¹⁰	Train ¹¹		
Enabled	Disabled	Enabled	Don't Care ⁶	DM ⁷	DBI (DC) ⁵	Train ⁹	Train ¹⁰	Train ¹¹		
Enabled	Enabled	Enabled	DBI (DC) ⁴	DBI (DC) ⁸	DBI (DC) ⁵	Train ⁹	Train ¹⁰	Train ¹¹		

Notes:

1. The DMI input signal is "Don' t Care". DMI input receivers are turned off.

2. DMI output drivers are turned off.

XIN 🕱 CUN

3. The MASK WRITE command is not allowed and is considered an illegal command when the DM function is disabled.

- 4. The DMI signal is treated as DBI and indicates whether the device needs to invert thewrite data received on DQ within a byte. The device inverts write data received on theDQ inputs if DMI is sampled HIGH and leaves the write data non-inverted if DMI is sampledLOW.
- 5. The device inverts read data on its DQ outputs associated within a byte and drives theDMI signal HIGH when more than four data bits = 1 within a given byte lane; otherwise,the device does not invert the read data and drives DMI signal LOW.
- 6. The device does not perform a MASK operation when it receives a WRITE (or MRW)command. During the WRITE burst, the DMI signal must be driven LOW.
- 7. The device requires an explicit MASKED WRITE command for all MASKED WRITE operations. The DMI signal is treated as a data mask (DM) and indicates which bytes within aburst will be masked. When the DMI signal is sampled HIGH, the device masks that beatof the burst for the given byte lane. All DQ input signals within a byte are "Don't Care"(either HIGH or LOW) when DMI is HIGH. When the DMI signal is sampled LOW, the devicedoes not perform a MASK operation and data received on the DQ inputs is writtento the array.
- 8. The device requires an explicit MASKED WRITE command for all MASKED WRITE operations. The device masks the write data received on the DQ inputs if five or more databits = 1 on DQ[2:7] or DQ[10:15] (for lower byte or upper byte respectively) and the DMIsignal is LOW. Otherwise, the device does not perform the MASK operation and treats itas a legal DBI pattern. The DMI signal is treated as a DBI signal, and data received on the DQ input is written to the array.
- 9. The DMI signal is treated as a training pattern. The device does not perform any MASKoperation and does not invert write data received on the DQ inputs.
- 10. The DMI signal is treated as a training pattern. The device returns the data pattern writtento the WRITE-FIFO.
- 11. The DMI signal is treated as a training pattern. For more information, see the Read DQCalibration Training section.

Notes:

1. N: Input data is written to DRAM cell.

- 2. I: Input data is inverted, then written to DRAM cell.
- 3. M: Input data is masked. The total count of 1 data bits on DQ[7:2] is equal to or greaterthan five.
- 4. Data mask (DM) is enable: MR13 OP [5] = 0, Data bus inversion (DBI) write is enable: MR3 OP[7] = 1.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

1. N: Input data is written to DRAM cell.

2. I: Input data is inverted, then written to DRAM cell.

3. Data mask (DM) is disable: MR13 OP [5] = 1, Data bus inversion (DBI) write is enable: MR3 OP[7] = 1.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

4.17 Preamble and Postamble Behavior

Preamble, Postamble Behavior in READ-to-READ Operations

The following illustrations show the behavior of the device's read DQS_t and DQS_cpins during cases where the preamble, postamble, and/or data clocking overlap.

DQS will be driven with the following priority

- 1. Data clocking edges will always be driven
- 2. Postamble
- 3. Preamble

Essentially the data clocking, preamble, and postamble will be ordered such that alledges will be driven.

Additional examples of seamless and borderline non-overlapping cases have been includedfor clarity.

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

READ-to-READ Operations Consecutive _ Figure 4-26: Seamless READ: ^tCCD = MIN + 1, Preamble = Toggle, 1.5nCK Postamble T14 T15 T17 T19 T10 T11 T12 T13 T16 T18 T20 T21 T26 T27 T28 T29 CK c CK_t CS BAO, CAn CAn CA BL Command READ-1 CAS-2 DES DES) DES READ-1 CAS-2 DESYDESY DES X DES X DES X DES DES X DES X DES DES DES Y DES Y DES X DES tCCD = 9 ^tDQSCK RL = 6^tDQSCK RL = 6TRPST *RPS ^tRPRE DQS_c High-Z High-Z DOS t *DOSO *DOSO High-Z Cour Cour aut Course DQ High-Z High-Z DMI BL/2 = 8BL/2 = 8Don't Care

Notes:

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
- 2. D_{OUT} n/m = data-out from column n and column m.

XIN 🕮 CUN

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-27: Consecutive READ: ^tCCD = MIN + 1, Preamble = Toggle, 0.5nCK Postamble

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 0.5nCK.
- 2. $D_{out}n/m = data-out$ from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

Notes:

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 1.5nCK.
- 2. D_{OUT} n/m = data-out from column n and column m.

XIN 🕮 CUN

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-29: Consecutive READ: ^tCCD = MIN + 1, Preamble = Static, 0.5nCK Postamble

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 0.5nCK.
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Don't Care

High-Z

DES

High-Z

Notes:

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-31: Consecutive READ: ^tCCD = MIN + 2, Preamble = Toggle, 0.5nCK Postamble

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 0.5nCK.
- 2. DOUT n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

Notes:

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 1.5nCK.
- 2. Dout n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-33: Consecutive READ: ^tCCD = MIN + 2, Preamble = Static, 0.5nCK Postamble

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 0.5nCK.
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Don't Care

High-Z

High-Z

Notes:

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 1.5nCK.
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-35: Consecutive READ: ^tCCD = MIN + 3, Preamble = Toggle, 0.5nCK Postamble

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Toggle; Postamble = 0.5nCK.
- 2. DOUT n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Notes:

- 1. BL = 16 for column n and column m; RL = 6; Preamble = Static; Postamble = 1.5nCK.
- 2. Dout n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-37: Consecutive READ: ^tCCD = MIN + 3, Preamble = Static, 0.5nCK Postamble

- 1. BL = 16 for column n and column m; RL = 6, Preamble = Static; Postamble = 0.5nCK
- 2. D_{OUT} n/m = data-out from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN CUN WRITE-to-WRITE Operations - Seamless

Notes:

1. BL = 16, Write postamble = 0.5nCK.

2. D_{IN} n/m = data-in from column n and column m.

3. The minimum number of clock cycles from the burst WRITE command to the burstWRITE command for any bank is BL/2.

4. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+8Gb LPDDR4 SDRAM

XIN 🕱 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-39: Seamless WRITE: ^tCCD = MIN, 1.5nCK Postamble, 533 MHz < Clock Frequency ≤ 800 MHz, ODT Worst Timing Case

- 1. Clock frequency = 800 MHz, ^tCK(AVG) = 1.25ns.
- 2. BL = 16, Write postamble = 1.5nCK.
- 3. D_{IN} n/m = data-in from column n and column m.
- 4. The minimum number of clock cycles from the burst WRITE command to the burstWRITE command for any bank is BL/2.
- 5. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

1. BL = 16, Write postamble = 1.5nCK.

XIN 🖾 CUN

- 2. D_{IN} n/m = data-in from column n and column m.
- 3. The minimum number of clock cycles from the burst WRITE command to the burstWRITE command for any bank is BL/2.
- 4. DES commands are shown for ease of illustration; other commands may be valid atthese times.

WRITE-to-WRITE Operations – Consecutive

Figure 4-41: Consecutive WRITE: ^tCCD = MIN + 1, 0.5nCK Postamble

Notes:

- 1. BL = 16, Write postamble = 0.5nCK.
- 2. D_{IN} n/m = data-in from column n and column m.

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

1. LB = 16, Write postamble = 1.5nCK.

XIN 🕮 CUN

- 2. D_{IN} n/m = data-in from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-43: Consecutive WRITE: ^tCCD = MIN + 2, 0.5nCK Postamble

- 1. BL = 16, Write postamble = 0.5nCK.
- 2. D_{IN} n/m = data-in from column n and column m.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

1. BL = 16, Write postamble = 1.5nCK.

XIN 🕮 CUN

2. D_{IN} n/m = data-in from column n and column m.

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Notes:

1. BL = 16, Write postamble = 0.5nCK.

2. D_{IN} n/m = data-in from column n and column m.

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

Notes:

1. BL = 16, Write postamble = 1.5nCK.

XIN 🕱 CUN

2. D_{IN} n/m = data-in from column n and column m.

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-47: Consecutive WRITE: ^tCCD = MIN + 4, 1.5nCK Postamble

Notes:

1. BL = 16, Write postamble = 1.5nCK.

2. D_{IN} n/m = data-in from column n and column m.

3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

XIN 🕱 CUN

4.18 PRECHARGE Operation

The PRECHARGE command is used to precharge or close a bank that has been activated. The PRECHARGE command is initiated with CKE, CS, and CA[5:0] in the properstate (see Command Truth Table). The PRECHARGE command can be used to prechargeeach bank independently or all banks simultaneously. The all banks (AB) flagand the bank address bit are used to determine which bank(s) to precharge. The prechargedbank(s) will be available for subsequent row access 'RPab after an all-bankPRECHARGE command is issued, or 'RPpb after a single-bank PRECHARGE command is issued.

To ensure that the device can meet the instantaneous current demands, the row prechargetime for an all-bank PRECHARGE (^tRPab) is longer than the per-bank prechargetime (^tRPpb).

Table 4-94: Precha	ge Bank Selection
--------------------	-------------------

AB (CA[5], R1)	BA2 (CA[2], R2)	BA1 (CA[1], R2)	BA0 (CA[0], R2)	Precharged Bank
0	0	0	0	Bank 0 only
0	0	0	1	Bank 1 only
0	0	1	0	Bank 2 only
0	0	1	1	Bank 3 only
0	1	0	0	Bank 4 only
0	1	0	1	Bank 5 only
0	1	1	0	Bank 6 only
0	1	1	1	Bank 7 only
1	Don't Care	Don't Care	Don't Care	All banks

Burst READ Operation Followed by Precharge

The PRECHARGE command can be issued as early as BL/2 clock cycles after a READcommand, but the PRECHARGE command cannot be issued until after 'RAS is satisfied. A new bank ACTIVATE command can be issued to the same bank after the row prechargetime ('RP) has elapsed. The minimum read-to-precharge time must also satisfy aminimum analog time from the second rising clock edge of the CAS-2 command. 'RTPbegins BL/2 - 8 clock cycles after the READ command.

Figure 4-48: Burst READ Followed by Precharge – BL16, Toggling Preamble, 0.5nCK Postamble

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-49: Burst READ Followed by Precharge – BL32, 2tCK, 0.5nCK Postamble

Burst WRITE Followed by Precharge

XIN 🕱 CUN

A write recovery time (^tWR) must be provided before a PRECHARGE command may beissued. This delay is referenced from the next rising edge of CK after the last valid DQSclock of the burst.

Devices write data to the memory array in prefetch multiples (prefetch = 16). An internalWRITE operation can only begin after a prefetch group has been clocked; therefore,^tWR starts at the prefetch boundaries. The minimum write-to-precharge time for commandsto the same bank is $WL + BL/2 + 1 + RU(^{t}WR / ^{t}CK)$ clock cycles.

Figure 4-50: Burst WRITE Followed by PRECHARGE - BL16, 2nCK Preamble, 0.5nCK Postamble

XIN 🕱 CUN

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.19Auto Precharge

Before a new row can be opened in an active bank, the active bank must be prechargedusing either the PRECHARGE command or the auto precharge (AP) function. When aREAD or a WRITE command is issued to the device, the AP bit (CA5) can be set to enable active bank to automatically begin precharge at the earliest possible momenturing the burst READ or WRITE cycle.

If AP is LOW when the READ or WRITE command is issued, the normal READ or WRITEburst operation is executed, and the bank remains active at the completion of the burst.

If AP is HIGH when the READ or WRITE command is issued, the auto PRECHARGEfunction is engaged. This feature enables the PRECHARGE operation to be partially orcompletely hidden during burst READ cycles (dependent upon READ or WRITE latency), thus improving system performance for random data access.

Burst READ With Auto Precharge

If AP is HIGH when a READ command is issued, the READ with AUTO PRECHARGEfunction is engaged. The devices start an AUTO PRECHARGE operation on the risingedge of the clock at BL/2 after the second beat of the READ w/AP command, or BL/4 – 4+ RU (^tRTP/^tCK) clock cycles after the second beat of the READ w/AP command, whicheveris greater. Following an AUTO PRECHARGE operation, an ACTIVATE command canbe issued to the same bank if the following two conditions are both satisfied:

1. The RAS precharge time (^tRP) has been satisfied from the clock at which the autoprecharge began, and

2. The RAS cycle time (^tRC) from the previous bank activation has been satisfied.

Figure 4-51: Burst READ With Auto Precharge - BL16, Non-Toggling Preamble, 0.5nCK Postamble

8GB eMMC+ 8Gb LPDDR4 SDRAM

Burst WRITE With Auto Precharge

If AP is HIGH when a WRITE command is issued, the WRITE with AUTO PRECHARGEfunction is engaged. The device starts an auto precharge on the rising edge ^tWR cyclesafter the completion of the burst WRITE.

Following a WRITE with AUTO PRECHARGE, an ACTIVATE command can be issued tothe same bank if the following conditions are met:

1. The RAS precharge time (tRP) has been satisfied from the clock at which the autoprecharge began, and

2. The RAS cycle time (^tRC) from the previous bank activation has been satisfied.

Figure 4-53: Burst WRITE With Auto Precharge – BL16, 2nCK Preamble, 0.5nCK Postamble

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-95: Timing	Between Commands (PRECH	ARGE and AUTO PRECHARGE): DQ OD	r is Disab	le
From Command	To Command	Minimum Delay Between	Unit	Notes
		From Command [®] and [®] to Command [®]		
READ	PRECHARGE	^t RTP	^t CK	1, 6
BL = 16	(to same bank as READ)		1011	
	PRECHARGE ALL	'RTP	ⁱ CK	1, 6
READ	PRECHARGE	8 ^t CK + ^t RTP	^t CK	1, 6
BL = 32	(to same bank as READ)			-
	PRECHARGE ALL	8 ^t CK + ^t RTP	ⁱ CK	1, 6
	PRECHARGE	<i>n</i> RTP	^t CK	1. 10
	(to same bank as READ w/AP)		_	, -
	PRECHARGE ALL	nRTP	^t CK	1, 10
	ACTIVATE	aRTP + ^t RPpb	^t CK	1 8 10
	(to same bank as READ w/AP)			1, 0, 10
	WRITE or WRITE w/AP	Illegal	_	
	(same bank)	incgai	_	
	MASK-WR or MASK-WR w/AP		-	
RL = 16	(same bank)	ilicyai		
	WRITE or WRITE w/AP	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2	tCK	3 4 5
	(different bank)	+ RD (^t RPST) - WL + ^t WPRE		5, 4, 5
	MASK-WR or MASK-WR w/AP	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2	tok	2 4 5
	(different bank)	+ RD (^t RPST) - WL + ^t WPRE		3, 4, 5
	READ or READ w/AP	Illegel		
	(same bank)	megai	-	
Table 4-95: Timing Between Commands (PRECHARGE and AUTO PRECHARGE): DQ ODT is From Command To Command Minimum Delay Between READ PRECHARGE 'RTP BL = 16 PRECHARGE ALL 'RTP READ PRECHARGE ALL 'RTP BL = 32 PRECHARGE ALL 'RTP PRECHARGE ALL 8'CK + 'RTP PRECHARGE ALL nRTP Co same bank as READ w/AP) nRTP Quest And ARTP NRTP Visite or WRITE w/AP Illegal (same bank) Illegal WRITE or WRITE w/AP RL + RU ('DOSCK MAX/CK) + BL/2 (different bank) + RD (RPST) - WL + 'WPRE MASK-WR or MASK-WR w/AP Illegal (same bank) BL/2 (different bank) + RD (RPST) - WL + 'WPRE READ or READ w/AP Illegal (different bank) BL/2 (different bank) BL/2 (different bank) BL	tor	2		
	(different bank)	BL/2	-CK	3
	PRECHARGE		tor	1 10
	(to same bank as READ w/AP)	8°CK + NRTP	-CK	1, 10
	PRECHARGE ALL	8 ^t CK + <i>n</i> RTP	^t CK	1, 10
	ACTIVATE		1011	4 9 49
	(to same bank as READ w/AP)	8'CK + nRTP+ 'RPpb	'CK	1, 8, 10
	WRITE or WRITE w/AP			
	(same bank)	lllegal	-	
	MASK-WR or MASK-WR w/AP			
READ w/AP	(same bank)	lllegal	-	
BL = 32	WRITE or WRITE w/AP	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2		
	(different bank)	+ RD (^t RPST) - WL + ^t WPRE	ⁱ CK	3, 4, 5
	MASK-WR or MASK-WR w/AP	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2		
	(different bank)	+ RD (^t RPST) - WL + ^t WPRE	^{'CK}	3, 4, 5
From Command To Command Minimum READ PRECHARGE (to same bank as READ) BL BL = 16 PRECHARGE ALL 8 READ PRECHARGE ALL 8 BL = 32 PRECHARGE ALL 8 PRECHARGE ALL 7 ACTIVATE 7 (to same bank as READ w/AP) 7 PRECHARGE ALL 7 ACTIVATE 7 (to same bank) 7 WRITE or WRITE w/AP 7 (same bank) 7 WRITE or WRITE w/AP 7 (different bank) 7 READ or READ or READ w/AP 7 (different bank) 7 READ or READ w/AP 8 (different bank) 8 PRECHARGE ALL 8 READ or READ w/AP 8 (different bank) 8 PRECHARGE ALL 8 READ or READ W/AP 8				
	(same bank)	lllegal	-	
	READ or READ w/AP			
	(different bank)	BL/2	۲CK	3

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-95: Timing Between Commands (PRECHARGE and AUTO PRECHARGE): DQ ODT is Disable (Continued)

From Command	To Command	Minimum Delay Between "From Command" and "To Command"	Unit	Notes
WRITE	PRECHARGE	WL + BL/2 + ^t WR + 1	^t CK	1, 7
BL = 16 and 32	PRECHARGE ALL	WI + BI /2 + ^t WR + 1	^t CK	1.7
	PRECHARGE			1,1
MASK-WR	(to same bank as MASK-WR)	WL + BL/2 + 'WR + 1	^t CK	1, 7
BL = 16	PRECHARGE ALL	WL + BL/2 + ^t WR + 1	^t CK	1, 7
	PRECHARGE	A + B /2 + n A B + 1	tor	1 11
	(to same bank as WRITE w/AP)	VVL + BL/2 + //VVR + 1	.CK	1, 11
	PRECHARGE ALL	WL + BL/2 + <i>n</i> WR + 1	^t CK	1, 11
	ACTIVATE	$WI + BI/2 + nWR + 1 + {}^{t}RPnh$	tCK	1 8 11
	(to same bank as WRITE w/AP)			1, 0, 11
	WRITE or WRITE w/AP	lllegal	_	
WRITE w/AP	(same bank)			
BL = 16 and 32	READ or READ w/AP	Illegal	-	
	(same bank)			
	WRITE or WRITE W/AP	BL/2	^t CK	3
	(different bank)	BL/2	^t CK	3
	READ or READ w/AP			
	(different bank)	WL + BL/2 + ^t WTR + 1	^t CK	3, 9
	PRECHARGE			
	(to same bank as MASK-WR	WL + BL/2 + <i>n</i> WR +1	^t CK	1, 11
	w/AP)			
	PRECHARGE ALL	WL + BL/2 + <i>n</i> WR +1	^t CK	1, 11
	ACTIVATE			
	(to same bank as MASK-WR	WL + BL/2 + <i>n</i> WR +1 + ^t RPpb	^t CK	1, 8, 11
	w/AP)			
	WRITE or WRITE w/AP	lllegal	_	3
MASK-WR w/AP	(same bank)			Ŭ
BL = 16	MASK-WR or MASK-WR w/AP	lllegal	_	3
	(same bank)			
	WRITE or WRITE w/AP	BL/2	^t CK	3
	MASK-WR OF MASK-WR W/AP	BL/2	^t CK	3
	(same bank)	Illegal	-	3
	BEAD or BEAD w/AP			
	(different bank)	WL + BL/2 + <i>n</i> WR +1	^t CK	3, 9
PRECHARGE	(to same bank as PRECHARGE)	4	^t CK	1
	PRECHARGE ALL	4	^t CK	1
	PRECHARGE	4	^t CK	1
PRECHARGE ALL	PRECHARGE ALL	4	^t CK	1

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. For a given bank, the precharge period should be counted from the latest PRECHARGEcommand, whether per-bank or all-bank, issued to that bank. The precharge period issatisfied tRP after that latest PRECHARGE command.
- 2. Any command issued during the minimum delay time as specified in the table above isillegal.
- 3. After READ w/AP, seamless READ operations to different banks are supported. AfterWRITE w/AP or MASK-WR w/AP, seamless WRITE operations to different banks are supported.READ, WRITE, and MASK-WR operations may not be truncated or interrupted.
- 4. tRPST values depend on MR1 OP[7] respectively.
- 5. ^tWPRE values depend on MR1 OP[2] respectively.
- 6. Minimum delay between "from command" and "to command" in clock cycle is calculated by dividing tRTP (in ns) by ^tCK (in ns) and rounding up to the next integer: Minimumdelay [cycles] = roundup (^tRTP [ns]/^tCK [ns]).
- 7. Minimum delay between "from command" and "to command" in clock cycle is calculated by dividing ^tWR (in ns) by ^tCK (in ns) and rounding up to the next integer: Minimumdelay [cycles] = roundup (WR [ns]/^tCK [ns]).
- 8. Minimum delay between "from command" and "to command" in clock cycle is calculated by dividing ^tRPpb (in ns) by CK (in ns) and rounding up to the next integer: Minimumdelay [cycles] = roundup (^tRPpb [ns]/^tCK [ns]).
- 9. Minimum delay between "from command" and "to command" in clock cycle is calculated by dividing ^tWTR (in ns) by ^tCK (in ns) and rounding up to the next integer: Minimumdelay [cycles] = roundup (^tWTR [ns]/^tCK [ns]).
- 10. For READ w/AP the value is nRTP, which is defined in mode register 2.
- 11. For WRITE w/AP the value is nWR, which is defined in mode register 1.

Table 4-96: Timing Between Commands (PRECHARGE and AUTO PRECHARGE): DQ ODT is Enable

From Command	To Command	Minimum Delay Between "From Command" and "To Command"	Unit	Notes
READ w/AP	WRITE or WRITE w/AP (different bank)	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2 + RD (^t RPST) - ODTLon - RD (^t ODTon MIN/ ^t CK) + 1	Minimum Delay Between From Command" and "To Command"UnitNotesRL + RU ('DQSCK MAX/'CK) + BL/2 RPST) - ODTLon - RD ('ODTon MIN/tCK) + 1'CK2, 3RL + RU ('DQSCK MAX/tCK) + BL/2 RPST) - ODTLon - RD ('ODTon MIN/tCK) + 1'CK2, 3RL + RU ('DQSCK MAX/tCK) + BL/2 RPST) - ODTLon - RD ('ODTon MIN/tCK) + 1'CK2, 3RL + RU ('DQSCK MAX/tCK) + BL/2 RPST) - ODTLon - RD ('ODTon MIN/tCK) + 1'CK2, 3RL + RU ('DQSCK MAX/tCK) + BL/2 RPST) - ODTLon - RD ('ODTon MIN/tCK) + 1'CK2, 3	2, 3
BL = 16	MASK-WR or MASK-WR w/AP (different bank)	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2 + RD (^t RPST) - ODTLon - RD (^t ODTon MIN/ ^t CK) + 1		2, 3
READ w/AP	WRITE or WRITE w/AP (different bank)	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2 + RD (^t RPST) - ODTLon - RD (^t ODTon MIN/ ^t CK) + 1	^t CK	2, 3
BL = 32	MASK-WR or MASK-WR w/AP (different bank)	RL + RU (^t DQSCK MAX/ ^t CK) + BL/2 + RD (^t RPST) - ODTLon - RD (^t ODTon MIN/ ^t CK) + 1	^t CK	2, 3

Notes:

1. The rest of the timing about PRECHARGE and AUTO PRECHARGE is same as DQ ODT is disable case.

2. After READ w/AP, seamless read operations to different banks are supported. READ,WRITE, and MASK-WR operations may not be truncated or interrupted.

3. tRPST values depend on MR1 OP[7] respectively.

RAS Lock Function

READ with AUTO PRECHARGE or WRITE/MASK WRITE with AUTO PRECHARGE commandsmay be issued after ^tRCD has been satisfied. The LPDDR4 SDRAM RAS lockoutfeature will schedule the internal precharge to assure that ^tRAS is satisfied. ^tRC needs tobe satisfied prior to issuing subsequent ACTIVATE commands to the same bank.

The figure below shows example of RAS lock function.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. ^tCK (AVG) = 0.938ns, Data rate = 2133 Mbps, ^tRCD (MIN) = MAX (18ns, 4nCK), ^tRAS (MIN)= MAX (42ns, 3nCK), nRTP = 8nCK, BL = 32.
- 2. ^tRCD = 20nCK comes from roundup (18ns/0.938ns).
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Delay Time From WRITE-to-READ with Auto Precharge

In the case of WRITE command followed by READ with AUTO PRECHARGE, controllermust satisfy ^tWR for the WRITE command before initiating the device internal auto-precharge.It means that (^tWTR + nRTP) should be equal or longer than (^tWR) when BL settingis 16, as well as (^tWTR + nRTP + 8nCK) should be equal or longer than (^tWR) whenBL setting is 32. Refer to the following figure for details.

Figure 4-55: Delay Time From WRITE-to-READ with Auto Precharge

Notes:

1. Burst length at read = 16.

2. DES commands are shown for ease of illustration; other commands may be valid atthese times.

XIN 🕱 CUN

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.20 REFRESH Command

The REFRESH command is initiated with CS HIGH, CA0 LOW, CA1 LOW, CA2 LOW, CA3HIGH and CA4 LOW at the first rising edge of clock. Per bank REFRESH is initiated withCA5 LOW at the first rising edge of the clock. The all-bank REFRESH is initiated withCA5 HIGH at the first rising edge of clock.

A per bank REFRESH command (REFpb) is performed to the bank address as transferredon CA0, CA1, and CA2 on the second rising edge of the clock. Bank address BA0 istransferred on CA0, bank address BA1 is transferred on CA1, and bank address BA2 istransferred on CA2. A per bank REFRESH command (REFpb) to the eight banks can beissued in any order. For example, REFpb commands may be issued in the following order:1-3-0-2-4-7-5-6. After the eight banks have been refreshed using the per bank REFRESHcommand, the controller can send another set of per bank REFRESH commands in the same order or a different order. One possible order can be a sequential roundrobin: 0-1-2-3-4-5-6-7. It is illegal to send a per bank REFRESH command to the samebank unless all eight banks have been refreshed using the per bank REFRESH command. The count of eight REFpb commands starts with the first REFpb command aftera synchronization event.

The bank count is synchronized between the controller and the device by resetting thebank count to zero. Synchronization can occur upon reset procedure or at every exitfrom self refresh. The REFab command also synchronizes the counter between the controllerand the device to zero. The device can be placed in self refresh, or a REFab commandcan be issued at any time without cycling through all eight banks using per bankREFRESH command. After the bank count is synchronized to zero, the controller canissue per bank REFRESH commands in any order, as described above.

A REFab command issued when the bank counter is not zero will reset the bank counterto zero and the device will perform refreshes to all banks as indicated by the row counter. If another REFRESH command (REFab or REFpb) is issued after the REFab commandthen it uses an incremented value of the row counter.

The table below shows examples of both bank and refresh counter increment behavior.

#	Command	BA0	BA1	BA2	Refresh Bank #	Bank Counter #	Ref. Conter # (Row Address #)		
0		Res	et, SRX, or RE	Fab		To 0	-		
1	REFpb	0	0	0	0	0 to 1			
2	REFpb	0	0	1	1	1 to 2			
3	REFpb	0	1	0	2	2 to 3			
4	REFpb	0	1	1	3	3 to 4	n		
5	REFpb	1	0	0	4	4 to 5	11		
6	REFpb	1	0	1	5	5 to 6			
7	REFpb	1	1	0	6	6 to 7			
8	REFpb	1	1	1	7	7 to 0	·		
9	REFpb	1	1	0	6	0 to 1			
10	REFpb	1	1	1	7	1 to 2			
11	REFpb	0	0	1	1	2 to 3			
12	REFpb	0	1	1	3	3 to 4	n ± 1		
13	REFpb	1	0	1	5	4 to 5	11 + 1		
14	REFpb	1	1	0	2	5 to 6			
15	REFpb	1	0	0	0	6 to 7			
16	REFpb	1	0	0	4	7 to 0			
17	REFpb	0	0	0	0	0 to 1			
18	REFpb	0	0	1	1	1 to 2	n + 2		
19	REFpb	0	1	0	2	2 to 3			
20	REFpb	V	V	V	0 to 7	To 0	n + 2		
21	REFpb	1	1	0	6	0 to 1	5 + 3		
22	REFpb	1	1	1	7	1 to 2	11 + 3		
				Snip					

Table 4-97: Bank and Refresh Counter Increment Behavior

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

A bank must be idle before it can be refreshed. The controller must track the bank beingrefreshed by the per bank REFRESH command.

The REFpb command must not be issued to the device until the following conditionshave been met:

•tRFCab has been satisfied after the prior REFab command

XIN 🕱 CUN

- •tRFCpb has been satisfied after the prior REFpb command
- •tRP has been satisfied after the prior PRECHARGE command to that bank
- •tRRD has been satisfied after the prior ACTIVATE command (for example, after activatinga row in a different bank than the one affected by the REFpb command)

The target bank is inaccessible during per bank REFRESH cycle time (^tRFCpb). However,other banks within the device are accessible and can be addressed during the cycle.During the REFpb operation, any of the banks other than the one being refreshed canbe maintained in an active state or accessed by a READ or a WRITE command. When the per bank REFRESH cycle has completed, the affected bank will be in the idle state.

After issuing REFpb, the following conditions must be met:

- •^tRFCpb must be satisfied before issuing a REFab command
- •tRFCpb must be satisfied before issuing an ACTIVATE command to the same bank
- •^tRRD must be satisfied before issuing an ACTIVATE command to a different bank
- •tRFCpb must be satisfied before issuing another REFpb command

An all-bank REFRESH command (REFab) issues a REFRESH command to every bank ina channel. All banks must be idle when REFab is issued (for example, by issuing a PRECHARGEALL command prior to issuing an all-bank REFRESH command). The REFabcommand must not be issued to the device until the following conditions have beenmet:

- •tRFCab has been satisfied following the prior REFab command
- •tRFCpb has been satisfied following the prior REFpb command
- •tRP has been satisfied following the prior PRECHARGE command

When an all-bank REFRESH cycle has completed, all banks will be idle. After issuing REFab:

- RFCab latency must be satisfied before issuing an ACTIVATE command,
- RFCab latency must be satisfied before issuing a REFab or REFpb command

Table 4-98: REFRESH Command Timing Constraints

Symbol	Minimum Delay From…	То	Notes
		REFab	
^t RFCab	REFab	ACTIVATE command to any bank	
		REFab	
^t RFCpb		REFab	
	REFab	ACTIVATE command to same bank as REFpb	
		REFab	
	REFpb	ACTIVATE command to a different bank than REFpb	
^t RRD		REFab	1
	Minimum Delay FromToFCabREFabREFabFCabREFabACTIVATE command to any ban REFabFCpbREFabREFabFCpbREFabACTIVATE command to same bank as REFabRRDREFpbACTIVATE command to a different bank th 	ACTIVATE command to a different bank than the prior ACTIVATE command	

Note:

1. A bank must be in the idle state before it is refreshed; therefore, REFab is prohibitedfollowing an ACTIVATE command. REFpb is supported only if it affects a bank that is in the idle state.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-56: All-Bank REFRESH Operation

Figure 4-57: Per Bank REFRESH Operation

Notes:

1. In the beginning of this example, the REFpb bank is pointing to bank 0.

2. Operations to banks other than the bank being refreshed are supported during the^tRFCpb period.

In general, a REFRESH command needs to be issued to the device regularly every 'REFlinterval. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. A maximum of eight REFRESH commands can be postponed during operation of the device, but at no point intime are more than a total of eight REFRESH commands allowed to be postponed. Anda maximum number of pulled-in or postponed REF command is dependent on refreshrate. It is described in the table below. In the case where eight REFRESH commands arepostponed in a row, the resulting maximum interval between the surrounding REFRESHcommands is limited to 9 × tREFI. A maximum of eight additional REFRESH commands can be issued in advance (pulled in), with each one reducing the number ofregular REFRESH commands required later by one. Note that pulling in more than eightREFRESH commands in advance does not reduce the number of regular REFRESHcommands required later; therefore, the resulting maximum interval between two surroundingREFRESH commands is limited to 9 × tREFI. At any given time, a maximum of16 REFRESH commands can be issued within 2 ×tREFI.

Self refresh mode may be entered with a maximum of eight REFRESH commands beingpostponed. After exiting self refresh mode with one or more REFRESH commands postponed, additional REFRESH commands may be

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

postponed to the extent that the totalnumber of postponed REFRESH commands (before and after self refresh) will never exceedeight. During self refresh mode, the number of postponed or pulled-in REFRESHcommands does not change.

And for per bank refresh, a maximum of 8 x 8 per bank REFRESH commands can bepostponed or pulled in for scheduling efficiency. At any given time, a maximum of 2 x 8x 8 per bank REFRESH commands can be issued within 2 x tREFI.

Table 4-99: Legacy REFRESH Command Timing Constraints

MR4 OP[2:0]	Refresh Rate	Max. No. of pulled-in or postponed REFab	Max. Interval between Two REFab	Max. No. of REFab ¹	Per Bank Refresh
000b	Low Temp. Limit	N/A	N/A	N/A	N/A
001b	4 × ^t REFI	8	9 × 4 × ^t REFI	16	1/8 of REFab
010b	2 × ^t REFI	8	9 × 2 × ^t REFI	16	1/8 of REFab
011b	1 × ^t REFI	8	9 × ^t REFI	16	1/8 of REFab
100b	0.5 × ^t REFI	8	9 × 0.5 × ^t REFI	16	1/8 of REFab
101b	0.25 × ^t REFI	8	9 × 0.25 × ^t REFI	16	1/8 of REFab
110b	0.25 × ^t REFI	8	9 × 0.25 × ^t REFI	16	1/8 of REFab
111b	High Temp. Limit	N/A	N/A	N/A	N/A

Note:

1. Maximum number of REFab within MAX(2 \times ^tREFI \times refresh rate multiplier, 16 \times ^tRFC).

Table 4-100: Modified REFRESH Command Timing Constraints

MR4 OP[2:0]	Refresh Rate	Max. No. of pulled-in or postponed REFab	Max. Interval between Two REFab	Max. No. of REFab ¹	Per Bank Refresh
000B	Low Temp. Limit	N/A	N/A	N/A	N/A
001B	4 × ^t REFI	2	3 × 4 × ^t REFI	4	1/8 of REFab
010B	2 × ^t REFI	4	5 × 2 × ^t REFI	8	1/8 of REFab
011B	1 × ^t REFI	8	9 × ^t REFI	16	1/8 of REFab
100B	0.5 × ^t REFI	8	9 × 0.5 × ^t REFI	16	1/8 of REFab
101B	0.25 × ^t REFI	8	9 × 0.25 × ^t REFI	16	1/8 of REFab
110B	0.25 × ^t REFI	8	9 × 0.25 × ^t REFI	16	1/8 of REFab
111B	High Temp. Limit	N/A	N/A	N/A	N/A

Notes:

1. For any thermal transition phase where refresh mode is transitioned to either 2 ×^tREFIor 4 ×^tREFI, LPDDR4 devices willsupport the previous postponed refresh requirementprovided the number of postponed refreshes is monotonically reduced to meet the newrequirement. However, the pulled-in REFRESH commands in previous thermal phase arenot applied in new thermal phase. Entering new thermal phase the controller mustcount the number of pulled-in REFRESH commands as zero, regardless of the number of remaining pulled-in REFRESH commands in the previous thermal phase.

2. LPDDR4 devices are refreshed properly if memory controller issues REFRESH commandswith same or shorter refresh period than reported by MR4 OP[2:0]. If a shorter refresh periodis applied, the corresponding requirements from this Table apply. For example, whenMR4 OP[2:0] = 001b, controller can be in any refresh rate from 4 ×tREFI to 0.25 ×tREFI.When MR4 OP[2:0] = 010b, the only prohibited refresh rate is 4 ×tREFI.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-58: Postponing REFRESH Commands (Example)

Figure 4-59: Pulling In REFRESH Commands (Example)

8 REFRESH commands pulled in

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.21 Refresh Requirement

Between the SRX command and SRE command, at least one extra REFRESH commandis required. After the SELF REFRESH EXIT command, in addition to the normal REFRESHcommand at 'REFI interval, the device requires a minimum of one extra REFRESHcommand prior to the SELF REFRESH ENTRY command.

Table 4-101: Refresh Requirement Parameters

Baramatar	Symbol	Density (per channel)						
Parameter		Symbol	4Gb	6Gb	8Gb	12Gb	16Gb	Unit
Number of banks per chann	el	-	8					-
Refresh window (^t REFW): (1 × Refresh) ³		^t REFW		32				
Required number of REFRESH commands in tREFW window		R	8192					_
Average refresh interval	REFab	^t REFI	3904					μs
(1 × Refresh) ³	REFpb	^t REFIpb			488			ns
REFRESH cycle time (all ba	anks)	^t RFCab	180	28	30	3	80	ns
REFRESH cycle time (per bank)		^t RFCpb	90	14	40	1	90	ns
Per bank refresh to per ban time (different bank)	k refresh	^t PBR2PBR	90	9	0	ç	90	ns

Notes:

1. Refresh for each channel is independent of the other channel on the die, or other channelsin a package. Power delivery in the user' s system should be verified to make surethe DC operating conditions are maintained when multiple channels are refreshed simultaneously.

2. Self refresh abort feature is available for higher density devices starting with 6Gb densityper channel device and ^tXSR_abort(MIN) is defined as ^tRFCpb + 17.5ns.

3. Refer to MR4 OP[2:0] for detailed refresh rate and its multipliers.

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.22SELF REFRESH Operation

Self Refresh Entry and Exit

The SELF REFRESH command can be used to retain data in the device without external REFRESH commands. The device has a built-in timer to accommodate SELF REFRESHoperation. Self refresh is entered by the SELF REFRESH ENTRY command defined byhaving CS HIGH, CA0 LOW, CA1 LOW, CA2 LOW, CA3 HIGH, CA4 HIGH, and CA5 valid(valid meaning that it is at a logic level HIGH or LOW) for the first rising edge, and CSLOW, CA0 valid, CA1 valid, CA2 valid, CA3 valid, CA4 valid, and CA5 valid at the secondrising edge of clock. The SELF REFRESH command is only allowed when READ DATAburst is completed and the device is in the idle state.

During self refresh mode, external clock input is needed and all input pins of the deviceare activated. The device can accept the following commands: MRR-1, CAS-2, DES, SRX,MPC, MRW-1, and MRW-2, except PASR bank/segment settingand SR abort setting.

The device can operate in self refresh mode within the standard and elevated temperatureranges. It also manages self refresh power consumption when the operating temperaturechanges: lower at low temperatures and higher at high temperatures.

For proper SELF REFRESH operation, power supply pins (V_{DD1}, V_{DD2}, and V_{DDQ}) mustbe at valid levels. V_{DDQ} can be turned off during self refresh with power-down after^tCKELCK is satisfied. (Refer to the Self Refresh Entry/Exit Timing with Power-Down Entry/Exit figure.) Prior to exiting self refresh with power-down, V_{DDQ} must be withinspecified limits. The minimum time that the device must remain in self refresh mode is^tSR (MIN). After self refresh exit is registered, only MRR-1, CAS-2, DES, MPC, MRW-1, and MRW-2 except PASR bank/segment mask settingand SR abort setting are allowed until ^tXSR is satisfied.

The use of self refresh mode introduces the possibility that an internally timed refreshevent can be missed when self refresh exit is registered. Upon exit from self refresh, it isrequired that at least one REFRESH command (8 per-bank or 1 all-bank) is issued beforeentry into a subsequent self refresh. This REFRESH command is not included in thecount of regular REFRESH commands required by the 'REFI interval, and does notmodify the postponed or pulled-in refresh counts; the REFRESH command does counttoward the maximum refreshes permitted within 2 \times 'REFI.

Figure 4-60: Self Refresh Entry/Exit Timing

- 1. MRR-1, CAS-2, DES, SRX, MPC, MRW-1, and MRW-2 commands (except PASR bank/segment setting) are allowed during self refresh.
- 2. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN © CUN Power-Down Entry and Exit During Self Refresh

Entering/exiting power-down mode is allowed during self refresh mode. The relatedtiming parameters between self refresh entry/exit and power-down entry/exit areshown below.

Figure 4-61: Self Refresh Entry/Exit Timing with Power-Down Entry/Exit

- 1. MRR-1, CAS-2, DES, SRX, MPC, MRW-1, and MRW-2 commands (except PASR bank/segment mask setting and SR abort setting) are allowed during self refresh.
- 2. Input clock frequency can be changed, or the input clock can be stopped, or floated after^tCKELCK satisfied and during power-down, provided that upon exiting power-down, the clock is stable and within specified limits for a minimum of ^tCKCKEH of stable clockprior to power-down exit and the clock frequency is between the minimum and maximumspecified frequency for the speed grade in use.
- 3. Two clock command for example.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Command Input Timing After Power-Down Exit

XIN 🕮 CUN

Command input timings after power-down exit during self refresh mode are shown below.

Figure 4-62: Command Input Timings after Power-Down Exit During Self Refresh

Notes:

- 1. MRR-1, CAS-2, DES, SRX, MPC, MRW-1, and MRW-2 commands (except PASR bank/segment setting) are allowed during self refresh.
- 2. Input clock frequency can be changed or the input clock can be stopped or floated after^tCKELCK satisfied and during power-down, provided that upon exiting power-down, the clock is stable and within specified limits for a minimum of ^tCKCKEH of stable clock priorto power-down exit and the clock frequency is between the minimum and maximumspecified frequency for the speed grade in use.
- 3. Two clock command for example.

Self Refresh Abort

If MR4 OP[3] is enabled, the device aborts any ongoing refresh during self refresh exitand does not increment the internal refresh counter. The controller can issue a validcommand after a delay of ^tXSR_abort instead of ^tXSR.

The value of ^tXSR_abort (MIN) is defined as ^tRFCpb + 17.5ns.

Upon exit from self refresh mode, the device requires a minimum of one extra refresh(eight per bank or one for the entire bank) before entering a subsequent self refreshmode. This requirement remains the same irrespective of the setting of the MR bit forself refresh abort.

Self refresh abort feature is valid for 6Gb density per channel and larger densities only.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

MRR, MRW, MPC Commands During ^tXSR, ^tRFC

XIN 🕱 CUN

MODE REGISTER READ (MRR) command, MODE REGISTER WRITE (MRW) commandand MULTI PURPOSE command except PASR bank/segment mask setting and SR abort setting can be issued during ^tXSR period.

Notes:

1. MPC and MRW commands are shown. Any combination of MRR, MRW, and MPC is allowedduring ^tXSR period.

2. "Any command" includes MRR, MRW, and all MPC commands.

MRR, MRW, and MPC can be issued during ^tRFC period.

Notes:

1. MPC and MRW commands are shown. Any combination of MRR, MRW, and MPC is allowedduring ^tRFCab or ^tRFCpb period.

2. REFRESH cycle time depends on REFRESH command. In the case of per bank REFRESHcommand issued, REFRESH cycle time will be ^tRFCpb.

3. "Any command" includes MRR, MRW, and all MPC commands.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.23 Power-Down Mode

Power-Down Entry and Exit

Power-down is asynchronously entered when CKE is driven LOW. CKE must not go LOWwhile the following operations are in progress:

- Mode register read
- Mode register write
- Read
- Write
- V_{REF(CA)} range and value setting via MRW
- + $V_{\text{REF}(DQ)}$ range and value setting via MRW
- · Command bus training mode entering/exiting via MRW
- VRCG HIGH current mode entering/exiting via MRW

CKE can go LOW while any other operations such as row activation, precharge, autoprecharge, or refresh are in progress. The power-down IDD specification will not be applieduntil such operations are complete. Power-down entry and exit are shown below.

Entering power-down deactivates the input and output buffers, excluding CKE and RESET_n. To ensure that there is enough time to account for internal delay on the CKE signalpath, CS input is required stable LOW level and CA input level is "Don' t Care" afterCKE is driven LOW, this timing period is defined as ¹CKELCS. Clock input is required afterCKE is driven LOW, this timing period is defined as ¹CKELCS. Clock input is input receivers except RESET_n after ¹CKELCK has expired. In powerdownmode, CKE must be held LOW; all other input signals except RESET_n are "Don'tCare." CKE LOW must be maintained until ¹CKE(MIN) is satisfied.

V_{DDQ} can be turned off during power-down after ^tCKELCK is satisfied. Prior to exitingpower-down, V_{DDQ} must be within its minimum/maximum operating range. No REFRESHoperations are performed in power-down mode except self refresh power-down.The maximum duration in non-self-refresh power-down mode is only limited by the refreshrequirements outlined in the REFRESH command section.

The power-down state is asynchronously exited when CKE is driven HIGH. CKE HIGHmust be maintained until ^tCKE(MIN) is satisfied. A valid, executable command can beapplied with power-down exit latency ^tXP after CKE goes HIGH. Power-down exit latency is defined in the AC timing parameter table.

Clock frequency change or clock stop is inhibited during ^tCMDCKE, ^tCKELCK, ^tCKCKEH, ^tXP, ^tMRWCKEL, and ^tZQCKE periods.

If power-down occurs when all banks are idle, this mode is referred to as idle powerdown. If power-down occurs when there is a row active in any bank, this mode is referred to as active power-down. And If power-down occurs when self refresh is in progress, this mode is referred to as self refresh power-down in which the internal refresh is continuing in the same way as self refresh mode.

When CA, CK, and/or CS ODT is enabled via MR11 OP[6:4] and also via MR22 or CAODTpad setting, the rank providing ODT will continue to terminate the command busin all DRAM states including power-down when V_{DDQ} is stable and within its minimum/maximum operating range.

The LPDDR4 DRAM cannot be placed in power-down state during start DQS intervaloscillator operation.
XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-65: Basic Power-Down Entry and Exit Timing

Note:

 Input clock frequency can be changed or the input clock can be stopped or floated duringpower-down, provided that upon exiting power-down, the clock is stable and withinspecified limits for a minimum of ^tCKCKEH of stable clock prior to power-down exit and the clock frequency is between the minimum and maximum specified frequency for thespeed grade in use.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. CKE must be held HIGH until the end of the burst operation.
- 2. Minimum delay time from READ command or READ with AUTO PRECHARGE commandto falling edge of CKE signal is as follows:

When read postamble = 0.5nCK (MR1 OP[7] = [0]), (RL ×^tCK) + ^tDQSCK(MAX) + ((BL/2) ×^tCK) + 1^tCK

XIN 🕱 CUN

When read postamble = 1.5nCK (MR1 OP[7] = [1]),

 $(RL \times {}^{t}CK) + {}^{t}DQSCK(MAX) + ((BL/2) \times {}^{t}CK) + 2{}^{t}CK$

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

1. CKE must be held HIGH until the end of the burst operation.

XIN 🕱 CUN

- Minimum delay time from WRITE command or MASK WRITE command to falling edgeof CKE signal is as follows: (WL ×^tCK) + ^tDQSS(MAX) + ^tDQS2DQ(MAX) + ((BL/2) ×^tCK) + ^tWR
- 3. This timing is applied regardless of DQ ODT disable/enable setting: MR11 OP[2:0].
- 4. This timing diagram only applies to the WRITE and MASK WRITE commands without autoprecharge.

Notes:

- 1. CKE must be held HIGH until the end of the burst operation.
- 2. Delay time from WRITE with AUTO PRECHARGE command or MASK WRITE with AUTOPRECHARGE command to falling edge of CKE signal is more than
- $(WL \times {}^{t}CK) + {}^{t}DQSS(MAX) + {}^{t}DQS2DQ(MAX) + ((BL/2) \times {}^{t}CK) + (nWR \times {}^{t}CK) + (2 \times {}^{t}CK)$
- 3. This timing is applied regardless of DQ ODT disable/enable setting: MR11 OP[2:0].

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Note:

1. CKE must be held HIGH until ^tCMDCKE is satisfied.

Figure 4-70: ACTIVATE Command to Power-Down Entry

Note:

1. CKE must be held HIGH until ${}^t\!CMDCKE$ is satisfied.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Note:

1. CKE must be held HIGH until ^tCMDCKE is satisfied.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

1. CKE must be held HIGH until the end of the burst operation.

2. Minimum delay time from MODE REGISTER READ command to falling edge of CKE signalis as follows:

When read postamble = 0.5nCK (MR1 OP[7] = [0]), (RL ×^tCK) + ^tDQSCK(MAX) + ((BL/2) ×^tCK) + 1^tCK When read postamble = 1.5nCK (MR1 OP[7] = [1]), (RL ×^tCK) + ^tDQSCK(MAX) + ((BL/2) ×^tCK) + 2^tCK)

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

1. CKE must be held HIGH until ^tMRWCKEL is satisfied.

2. This timing is the general definition for power-down entry after MODE REGISTER WRITEcommand. When a MODE REGISTER WRITE command changes a parameter or starts anoperation that requires special timing longer than ¹MRWCKEL, that timing must be satisfiedbefore CKE is driven LOW. Changing the V_{REF(DQ)} value is one example, in this casethe appropriate ¹VREF-SHORT/MIDDLE/LONG must be satisfied.

Figure 4-74: MULTI PURPOSE Command for ZQCAL Start to Power-Down Entry

Note:

1. ZQ calibration continues if CKE goes LOW after ^tZQCKE is satisfied.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.24 Input Clock Stop and Frequency Change Clock Frequency Change – CKE LOW

During CKE LOW, the device supports input clock frequency changes under the followingconditions:

•^tCK(abs) (MIN) is met for each clock cycle

XIN 🕱 CUN

- Refresh requirements apply during clock frequency change
- During clock frequency change, only REFab or REFpb commands may be executing
- Any ACTIVATE or PRECHARGE commands have completed prior to changing the frequency
- Related timing conditions, ^tRCD and tRP, have been met prior to changing the frequency
- The initial clock frequency must be maintained for a minimum of ^tCKELCK after CKEgoes LOW
- The clock satisfies ^tCH(abs) and ^tCL(abs) for a minimum of ^tCKCKEH prior to CKE goingHIGH

After the input clock frequency changes and CKE is held HIGH, additional MRW commandsmay be required to set the WR, RL, and so forth. These settings may require adjustment o meet minimum timing requirements at the target clock frequency.

Clock Stop – CKE LOW

During CKE LOW, the device supports clock stop under the following conditions:

- CK_t and CK_c are don't care during clock stop
- Refresh requirements apply during clock stop
- During clock stop, only REFab or REFpb commands may be executing
- Any ACTIVATE or PRECHARGE commands have completed prior to stopping the clock
- Related timing conditions, ^tRCD and tRP, have been met prior to stopping the clock
- The initial clock frequency must be maintained for a minimum of ^tCKELCK after CKEgoes LOW
- The clock satisfies ^tCH(abs) and ^tCL(abs) for a minimum of ^tCKCKEH prior to CKE goingHIGH

Clock Frequency Change – CKE HIGH

During CKE HIGH, the device supports input clock frequency change under the followingconditions:

•^tCK(abs) (MIN) is met for each clock cycle

- Refresh requirements apply during clock frequency change
- During clock frequency change, only REFab or REFpb commands may be executing
- Any ACTIVATE, READ, WRITE, PRECHARGE, MODE REGISTER WRITE, or MODEREGISTER READcommands (and any associated data bursts) have completed prior changing the frequency
- Related timing conditions (^tRCD, ^tWR, ^tRP, ^tMRW, and ^tMRR) have been met prior tochanging the frequency
- During clock frequency change, CS is held LOW
- The device is ready for normal operation after the clock satisfies ^tCH(abs) and ^tCL(abs) for a minimum of 2 × ^tCK + ^tXP

After the input clock frequency is changed, additional MRW commands may be required to set the WR, RL, and so forth. These settings may need to be adjusted to meetminimum timing requirements at the target clock frequency.

Clock Stop – CKE HIGH

During CKE HIGH, the device supports clock stop under the following conditions:

- CK_t is held LOW and CK_c is held HIGH during clock stop
- During clock stop, CS is held LOW
- Refresh requirements apply during clock stop
- During clock stop, only REFab or REFpb commands may be executing
- Any ACTIVATE, READ, WRITE, MPC (WRITE-FIFO, READ-FIFO, READ DQ CALIBRATION), PRECHARGE, MODE REGISTER WRITE, or MODE REGISTER READ commandshave completed, including any associated data bursts and extra 4 clock cyclesmust be provided prior to stopping the clock
- Related timing conditions (tRCD, tWR, tRP, tMRW, tMRR, tZQLAT, and so forth) havebeen met prior to stoppingthe clock
- READ with AUTO PRECHARGE and WRITE with AUTO PRECHARGE commands needextra 4 clock cycles inaddition to the related timing constraints, nWR and nRTP, tocomplete the operations
- REFab, REFpb, SRE, SRX, and MPC[ZQCAL START] commands are required to haveextra 4 clock cycles priorto stopping the clock

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

• The device is ready for normal operation after the clock is restarted and satisfiestCH(abs) and tCL(abs) for aminimum of 2 ×tCK + tXP

4.25MODE REGISTER READ Operation

The MODE REGISTER READ (MRR) command is used to read configuration and status data from the device registers. The MRR command is initiated with CS and CA[5:0] in the proper state as defined by the Command Truth Table. The mode register address operands (MA[5:0]) enable the user to select one of 64 registers. The mode register con- tents are available on the first four UI data bits of DQ[7:0] after RL × ^tCK + ^tDQSCK + ^tDQSQ following the MRR command. Subsequent data bits contain valid but undefined content. DQS is toggled for the duration of the MODE REGISTER READ burst. The MRR has a command burst length of 16. MRR operation must not be interrupted.

Table 4-102: MRR

UI	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
DQ0		O	P0								V					
DQ1		O	P1								V					
DQ2		O	P2								V					
DQ3		O	P3								V					
DQ4		O	P4								V					
DQ5		O	P5								V					
DQ6		O	P6								V					
DQ7		O	P7			V										
DQ8– DQ15									V							
DMI0– DMI1									V							

Notes:

1. MRR data are extended to the first 4 UIs, allowing the LPDRAM controller to sample data easily.

2. DBI during MRR depends on mode register setting MR3 OP[6].

3. The read preamble and postamble of MRR are the same as for a normal read

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. Only BL = 16 is supported.
- 2. Only DESELECT is allowed during ^tMRR period.

XIN 🕱 CUN

- 3. There are some exceptions about issuing commands after ¹MRR. Refer to MRR/MRWTiming Constraints Table for detail.
- 4. DBI is disable mode.
- 5. DES commands except ^tMRR period are shown for ease of illustration; other commandsmay be valid at these times.
- 6. DQ/DQS: Vssq termination

XIN 🕸 CUN

MRR After a READ and WRITE Command

After a prior READ command, the MRR command must not be issued earlier than BL/2clock cycles, in a similar way WL + BL/2 + 1 + RU (^tWTR/^tCK) clock cycles after a PRIORWRITE, WRITE with AP, MASK WRITE, MASK WRITE with AP, and MPC[WRITE-FIFO]command in order to avoid the collision of READ and WRITE burst data on device internaldata bus.

Figure 4-76: READ-to-MRR Timing

Notes:

1. The minimum number of clock cycles from the burst READ command to the MRR commandis BL/2.

Read BL = 32, MRR BL = 16, RL = 14, Preamble = Toggle, Postamble = 0.5nCK, DBI = Disable, DQ/DQS: V_{SSQ} termination.
 D_{OUT} n = data-out to column n.

4. DES commands except ^tMRR period are shown for ease of illustration; other commandsmay be valid at these times.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. Write BL=16, Write postamble = 0.5nCK, DQ/DQS: V_{SSQ} termination.
- 2. Only DES is allowed during ^tMRR period.
- 3. D_{OUT} n = data-out to column n.
- 4. The minimum number of clock cycles from the BURST WRITE command to MRR commandis WL + BL/2 + 1 + RU(^tWTR/^tCK).
- 5. ^tWTR starts at the rising edge of CK after the last latching edge of DQS.
- 6. DES commands except ^tMRR period are shown for ease of illustration; other commandsmay be valid at these times.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

MRR After Power-Down Exit

Following the power-down state, an additional time, ^tMRRI, is required prior to issuing the MODE REGISTER READ (MRR) command. This additional time (equivalent to^tRCD) is required in order to maximize power-down current savings by allowing morepower-up time for the MRR data path after exit from power-down mode.

Figure 4-78: MRR Following Power-Down

Notes:

1. Only DES is allowed during ^tMRR period.

2. DES commands except tMRR period are shown for ease of illustration; other commandsmay be valid at these times.

4.26 MODE REGISTER WRITE

The MODE REGISTER WRITE (MRW) writes configuration data to the mode registers.

The MRW command is initiated with CKE, CS, and CA[5:0] to valid levels at the risingedge of the clock. The mode register address and the data written to it is contained inCA[5:0] according to the Command Truth Table. The MRW command period is definedby ^tMRW. Mode register WRITEs to read-only registers have no impact on the functionality of the device.

Figure 4-79: MODE REGISTER WRITE Timing

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Mode Register Write States

MRW can be issued from either a bank-idle or a bank-active state. Certain restrictionsmay apply for MRW from an active state.

Table 4-103: Truth Table for MRR and MRW

Current State	Command	Intermediate State	Next State
	MRR	Reading mode register, all banks idle	All banks idle
All banks idle	MRW	All banks idle	
Bank(a) active	MRR	Reading mode register	Bank(s) active
Darik(S) active	MRW	Writing mode register	Bank(s) active

Table 4-104: MRR/MRW Timing Constraints: DQ ODT is Disable

From Command	To Command	Minimum Delay Between "From Command" and "To Command"	Unit	Notes
	MRR	^t MRR	-	
From CommandTo CommandMinini "From ComMRRMRRRD/RDARL + RU('DQSCKMRWRL + RU('DQSCKMRWRL + RU('DQSCKMRWRL + RU('DQSCKWR/WRA/MWR/WL + 1WRWRA/MWR/WL + 1MRWMRRPOWER-DOWN EXITRD/RDAMRWWR/WRA/MWR/MWRAMRWRD/RDAMRWRD/RDAMRWRD/RDAMRWRD/RDAMRWWR/WRA/MWR/MWRAMRWMRWRDRL + BL/2 + RU('MAX)RD with AUTO PRECHARGEMRWWR/MWR with AUTO PRECHARGEMRWWR/MWR with AUTO PRECHARGEWL + 1 + BL/2 + RU('MAX)	^t MRR	_		
MRR	WR/WRA/MWR/MWRA	RL + RU(^I DQSCK(MAX)/ ^I CK) + BL/2 -WL + ^I WPRE + RD(^I RPST)	nCK	
	ndTo CommandMinimum Delay Between "From Command" and "To Command"MRRMRR'MRRRD/RDA'MRRWR/WRA/MWR/MWRARL + RU('DQSCK(MAX)/'CK) + BL/2 -WL + 'WPRE - RD('RPST)MRWRL + RU('DQSCK(MAX)/'CK) + BL/2 + 3MRWRL + RU('DQSCK(MAX)/'CK) + BL/2 + 3R/BL/2R/BL/2MRR'MRD'N'YP + 'MRRI'N'XP + 'MRRIWR/WRA/MWR/MWRA'MRDWR/WRA/MWR/MWRA'MRDMRW'MRW-MRWMRW'MRWMRW'MRWMRW'MRWMRWWL + 1 + BL/2 + RU('DQSCK(MAX)/'CK) + RD('RPST) + MAX(RU(7.5ns/'CK), 8nCK) + nRTP - 8MRWWL + 1 + BL/2 + MAX(RU(7.5ns/'CK), 8nCK) + nWF	nCK		
RD/RDA		BL/2	nCK	
WR/WRA/MWR/ MWRA		WL + 1 + BL/2 + RU(^t WTR/ ^t CK)	nCK	
MRW		^t MRD	-	
POWER-DOWN EXIT		^t XP + ^t MRRI	_	
MRR RD/RDA WR/WRA/MWR/ MWRA MRW POWER-DOWN EXIT MRW RD/ RD-FIFO/ READ DQ CAL RD with AUTO PRECHARGE WR/ MWR/ WR-FIFO	RD/RDA	^t MRD	-	
	WR/WRA/MWR/MWRA	^t MRD	-	
	MRW	"From Command" and "To Command" Unit 'MRR - 'MRR - 'MRR - 'RA RL + RU('DQSCK(MAX)/'CK) + BL/2 - WL + 'WPRE + RD('RPST) nCK RL + RU('DQSCK(MAX)/'CK) + BL/2 + 3 nCK WL + 1 + BL/2 + RU('WTR/'CK) nCK WL + 1 + BL/2 + RU('WTR/'CK) nCK 'MRD - 'MRW - RL + BL/2 + RU('DQSCK(MAX)/'CK) + RD('RPST) + MAX(RU(7.5ns/'CK), 8nCK) nCK RL + BL/2 + RU('DQSCK(MAX)/'CK) + RD('RPST) + MAX(RU(7.5ns/'CK), 8nCK) nCK WL + 1 + BL/2 + MAX(RU(7.5ns/'CK), 8nCK) nCK WL + 1 + BL/2 + MAX(RU(7.5ns/'CK), 8nCK) + nWR nCK	-	
RD/ RD-FIFO/ READ DQ CAL		RL + BL/2 + RU(^t DQSCK(MAX)/ ^t CK) + RD(^t RPST) + MAX(RU(7.5ns/ ^t CK), 8nCK)	nCK	
RD with AUTO PRECHARGE	MDW	RL + BL/2 + RU(^t DQSCK(MAX)/ ^t CK) + RD(^t RPST) + MAX(RU(7.5ns/ ^t CK), 8nCK)+ nRTP - 8	nCK	
WR/ MWR/ WR-FIFO		WL + 1 + BL/2 + MAX(RU(7.5ns/ ^t CK), 8nCK)	nCK	
WR/MWR with AUTO PRECHARGE		WL + 1 + BL/2 + MAX(RU(7.5ns/ ^t CK), 8nCK)+ nWR	nCK	

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-105: MRR/MRW Timing Constraints: DQ ODT is Enable									
From Command	To Command	Minimum Delay Between "From Command" and "To Command"	Unit	Notes					
	MRR	^t MRR	-						
MRR RD/RDA WR/WRA/MWR/	RD/RDA	^t MRR	-						
	WR/WRA/MWR/MWRA	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 -ODTLon - RD(^t ODTon(MIN)/ ^t CK) + RD(^t RPST) + 1	nCK						
	MRW	RL + RU(^t DQSCK(MAX)/ ^t CK) + BL/2 + 3	nCK						
RD/RDA		BL/2	nCK						
WR/WRA/MWR/ MWRA		WL + 1 + BL/2 + RU(^t WTR/ ^t CK)	nCK						
MRW	MRR	^t MRD	-						
POWER-DOWN EXIT		^t XP + ^t MRRI	_						
	RD/RDA	^t MRD	-						
MRW	WR/WRA/MWR/MWRA	^t MRD	-						
	MRW	^t MRW	-						
RD/ RD-FIFO/ READ DQ CAL		RL + BL/2 + RU(^t DQSCK(MAX)/ ^t CK) + RD(^t RPST) + MAX(RU(7.5ns/ ^t CK), 8nCK)	nCK						
RD with AUTO PRECHARGE		RL + BL/2 + RU(^t DQSCK(MAX)/ ^t CK) + RD(^t RPST) + MAX(RU(7.5ns/ ^t CK), 8nCK)+ nRTP - 8	nCK						
WR/ MWR/ WR-FIFO	MRW	WL + 1 + BL/2 + MAX(RU(7.5ns/ ^t CK), 8nCK)	nCK						
WR/MWR with AUTO PRECHARGE		WL + 1 + BL/2 + MAX(RU(7.5ns/ ^t CK), 8nCK)+ nWR	nCK						

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.27V_{REF} Current Generator (VRCG)

LPDDR4 SDRAM V_{REF} current generators (VRCG) incorporate a high current mode toreduce the settling time of the internal V_{REF(DQ)} and V_{REF(CA)} levels during training andwhen changing frequency set points during operation. The high current mode is enabledby setting MR13[OP3] = 1. Only DESELECT commands may be issued until^tVRCG_ENABLE is satisfied. ^tVRCG_ENABLE timing is shown below.

Figure 4-80: VRCG Enable Timing

VRCG high current mode is disabled by setting MR13[OP3] = 0. Only DESELECT commandsmay be issued until VRCG_DISABLE is satisfied. VRCG_DISABLE timing isshown below.

Figure 4-81: VRCG Disable Timing

Note that LPDDR4 SDRAM devices support $V_{FER(CA)}$ and $V_{REF(DQ)}$ range and valuechanges without enabling VRCG high current mode.

Table 4-106: VRCG Enable/Disable Timing

Parameter	Symbol	Min	Max	Unit
V _{REF} high current mode enable time	^t VRCG_ENABLE	_	200	ns
V _{REF} high current mode disable time	^t VRCG_DISABLE	_	100	ns

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.28VREF Training

VREF(CA) **Training**

The device's internal $V_{\text{REF}(CA)}$ specification parameters are operating voltage range, stepsize, V_{REF} step time, V_{REF} full-range step time, and V_{REF} valid level.

The voltage operating range specifies the minimum required V_{REF} setting range forLPDDR4 devices. The minimum range is defined by V_{REF} , max and V_{REF} , min.

Figure 4-82: VREF Operating Range (VREF,max, VREF,min)

The V_{REF} step size is defined as the step size between adjacent steps. However, for a givendesign, the device has one value for V_{REF} step size that falls within the given range.

The V_{REF} set tolerance is the variation in the V_{REF} voltage from the ideal setting. This accountsfor accumulated error over multiple steps. There are two ranges for V_{REF} set toleranceuncertainty. The range of V_{REF} set tolerance uncertainty is a function of thenumber of steps n.

The V_{REF} set tolerance is measured with respect to the ideal line that is based on the twoendpoints, where the endpoints are at the minimum and maximum V_{REF} values for aspecified range.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-83: V_{REF} Set-Point Tolerance and Step Size

XIN 🕱 CUN

The V_{REF} increment/decrement step times are defined by $V_{REF}_TIME-SHORT$, $V_{REF}_TIME-MIDDLE$, and $V_{REF}_TIME-LONG$. The parameters are defined from TS toTE as shown below, where TE is referenced to when the V_{REF} voltage is at the final DClevel within the V_{REF} valid tolerance (V_{REF,val_tol}).

The V_{REF} valid level is defined by V_{REF,val_tol} to qualify the step time TE (see the followingfigures). This parameter is used to ensure an adequate RC time constant behavior of thevoltage level change after any V_{REF} increment/decrement adjustment. This parameter isonly applicable for LPDDR4 component level validation/characterization.

^tV_{REF}_TIME-SHORT is for a single step size increment/decrement change in the V_{REF}voltage.

^tV_{REF}_TIME-MIDDLE is at least two stepsizes increment/decrement change within thesame V_{REF(CA)} range in V_{REF} voltage.

^tV_{REF}_TIME-LONG is the time including up to V_{REF,min} to V_{REF,max} or V_{REF,max} to V_{REF,min}change across the V_{REF}(CA) range in V_{REF} voltage.

TS is referenced to MRW command clock.

TE is referenced to $V_{\text{REF}_val_tol}$.

8GB eMMC+ 8Gb LPDDR4 SDRAM

Notes:

1. TS is referenced to MRW command clock.

2. TE is referenced to $V_{\text{RFF,VAL}}$ TOL.

The MRW command to the mode register bits are as follows; MR12 OP[5:0] : VREF(CA) Setting MR12 OP[6] : VREF(CA) Range

The minimum time required between two VREF MRW commands is ^tVREF TIME-SHORT for a single step and ^tV_{REF} TIME-MIDDLE for a full voltage range step.

Figure 4-85: VREF(CA) Single-Step Increment

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-86: V_{REF(CA)} Single-Step Decrement

Figure 4-87: V_{REF(CA)} Full Step from V_{REF,min} to V_{REF,max}

Figure 4-88: V_{REF(CA)} Full Step from V_{REF,max} to V_{REF,min}

The following table contains the CA internal V_{REF} specification that will be characterized at the component level for compliance.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

	VREF(CA) Specifications					
Symbol	Parameter	Min	Тур	Max	Unit	Notes
VREF(CA),max_r0	V _{REF(CA)} range-0 MAX operat-ing point	-	_	44.9%	Vddq	1, 11
V _{REF(CA),min_r0}	V _{REF(CA)} range-0 MIN operat-ing point	15.0%	_	-	V_{DDQ}	1, 11
VREF(CA),max_r1	V _{REF(CA)} range-1 MAX operat-ing point	_	_	62.9%	Vddq	1, 11
VREF(CA),min_r1	V _{REF(CA)} range-1 MIN operat-ing point	32.9%	_	-	Vddq	1, 11
V _{REF(CA),step}	$V_{\text{REF}(CA)}$ step size	0.50%	0.60%	0.70%	V_{DDQ}	2
	V oot toloropoo	-11	0	11	mV	3, 4, 6
V REF(CA),set_tol	VREF(CA) Set tolerance	-1.1	0	1.1	Unit VDDQ VDDQ VDDQ VDDQ VDDQ MV mV mV ns ns ns ns Ns VDDQ	3, 5, 7
^t V _{REF} _TIME-SHORT		_	-	100	ns	8
^t V _{REF} _TIME-MIDDLE		_	-	200	ns	12
^t V _{REF} _TIME-LONG	V _{REF(CA)} step time	_	_	250	ns	9
^t V _{REF_time_weak}		_	_	1	ms	13, 14
VREF(CA)_val_tol	V _{REF(CA)} valid tolerance	-0.10%	0.00%	0.10%	VDDQ	10

Notes:

1. $V_{\text{REF(CA)}}$ DC voltage referenced to $V_{\text{DD2(DC)}}$.

2. $V_{\text{REF(CA)}}$ step size increment/decrement range. $V_{\text{REF(CA)}}$ at DC level.

3. VREF(CA),new = V REF(CA),old + n × V REF(CA),step; n = number of steps; if increment, use "+"; ifdecrement, use "-".

- 4. The minimum value of V_{REF(CA)} setting tolerance = V_{REF(CA),new} 11mV. The maximum value of V_{REF(CA)} setting tolerance = V_{REF(CA),new} + 11mV. For n > 4.
- 5. The minimum value of $V_{\text{REF(CA)}}$ setting tolerance = $V_{\text{REF(CA),new}}$ 1.1mV. The maximum value of $V_{\text{REF(CA)}}$ setting tolerance = $V_{\text{REF(CA),new}}$ + 1.1mV. For n \leq 4.
- 6. Measured by recording the minimum and maximum values of the V_{REF(CA)} output overthe range, drawing a straight line between those points and comparing all otherV_{REF(CA)} output settings to that line.
- 7. Measured by recording the minimum and maximum values of the $V_{REF(CA)}$ output acrossfour consecutive steps (n = 4), drawing a straight line between those points and comparingall other $V_{REF(CA)}$ output settings to that line.
- 8. Time from MRW command to increment or decrement one step size for $V_{\text{REF}(\text{CA})}$.
- 9. Time from MRW command to increment or decrement V_{REF,min} to V_{REF,max} or V_{REF,max} toV_{REF,min} change across the V_{REF(CA)} range in V_{REF} voltage.
- 10. Only applicable for DRAM component level test/characterization purposes. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will becharacterized at the component level.
- 11. DRAM range-0 or range-1 set by MR12 OP[6].
- 12. Time from MRW command to increment or decrement more than one step size up to afull range of V_{REF} voltage within the same V_{REF(CA)} range.
- 13. Applies when VRCG high current mode is not enabled, specified by MR13 [OP3] = 0b.
- 14. ^tV_{REF_time_weak} covers all V_{REF(CA)} range and value change conditions are applied to^tV_{REF}_TIME-SHORT/MIDDLE/LONG.

VREF(DQ) Training

The device's internal $V_{REF(DQ)}$ specification parameters are operating voltage range, stepsize, V_{REF} step tolerance, V_{REF} step time and V_{REF} valid level.

The voltage operating range specifies the minimum required V_{REF} setting range for LPDDR4 devices. The minimum range is defined by $V_{REF,max}$ and $V_{REF,min}$.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-89: V_{REF} Operating Range (V_{REF,max}, V_{REF,min})

XIN 🕮 CUN

The V_{REF} step size is defined as the step size between adjacent steps. However, for a givendesign, the device has one value for V_{REF} step size that falls within the given range.

The V_{REF} set tolerance is the variation in the V_{REF} voltage from the ideal setting. This accountsfor accumulated error over multiple steps. There are two ranges for V_{REF} set toleranceuncertainty. The range of V_{REF} set tolerance uncertainty is a function of thenumber of steps n.

The V_{REF} set tolerance is measured with respect to the ideal line that is based on the twoendpoints, where the endpoints are at the minimum and maximum V_{REF} values for aspecified range.

Figure 4-90: V_{REF} Set Tolerance and Step Size

V_{REF} step setting

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

The V_{REF} increment/decrement step times are defined by ${}^{t}V_{REF}$ _TIME-SHORT, ${}^{t}V_{REF}$ _TIME-MIDDLE and ${}^{t}V_{REF}$ _TIME-LONG. The ${}^{t}V_{REF}$ _TIME-SHORT, ${}^{t}V_{REF}$ _TIMEMIDDLE and ${}^{t}V_{REF}$ _TIME-LONG times are defined from TS to TE in the following figurewhere TE is referenced to when the V_{REF} voltage is at the final DC level within the V_{REF}valid tolerance (V_{REF,VAL_TOL}).

The V_{REF} valid level is defined by V_{REF,VAL_TOL} to qualify the step time TE (see the figurebelow). This parameter is used to ensure an adequate RC time constant behavior of thevoltage level change after any V_{REF} increment/decrement adjustment. This parameter isonly applicable for DRAM component level validation/characterization.

^tV_{REF}_TIME-SHORT is for a single step size increment/decrement change in the V_{REF}voltage.

^tV_{REF}_TIME-MIDDLE is at least two step sizes of increment/decrement change in theV_{REF(DQ)} range in the V_{REF}voltage.

^tV_{REF}_TIME-LONG is the time including and up to the full range of V_{REF} (MIN to MAX orMAX to MIN) across the V_{REF(DQ)} range in V_{REF} voltage.

Figure 4-91: V_{REF(DQ)} Transition Time for Short, Middle, or Long Changes

Notes:

1. TS is referenced to MRW command clock.

2. TE is referenced to $V_{\text{REF},\text{VAL}_\text{TOL}}.$

The MRW command to the mode register bits are defined as: MR14 OP[5:0]: $V_{REF(DQ)}$ setting MR14 OP[6]: $V_{REF(DQ)}$ range

The minimum time required between two V_{REF} MRW commands is ${}^{t}V_{REF}$ _TIME-SHORTfor a single step and ${}^{t}V_{REF}$ _TIME-MIDDLE for a full voltage range step.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕸 CUN

Figure 4-93: V_{REF(DQ)} Single-Step Size Decrement

Figure 4-94: VREF(DQ) Full Step from VREF,min to VREF,max

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕸 CUN

Figure 4-95: V_{REF(DQ)} Full Step from V_{REF,max} to V_{REF,min}

The following table contains the DQ internal V_{REF} specification that will be characterized at the component level for compliance.

Table 4-108: Internal	V _{REF(DQ)} Specifications
-----------------------	-------------------------------------

Symbol	Parameter	Min	Тур	Мах	Unit	Notes
VREF(DQ),max_r0	V _{REF} MAX operating point Range-0	_	_	44.9%	Vddq	1, 11
VREF(DQ),min_r0	V _{REF} MIN operating point Range-0	15.0%	_	_	Vddq	1, 11
VREF(DQ),max_r1	V _{REF} MAX operating point Range-1	_	_	62.9%	Vddq	1, 11
V _{REF(DQ),min_r1}	V _{REF} MIN operating point Range-1	32.9%	-	-	V _{DDQ}	1, 11
V _{REF(DQ),step}	V _{REF(DQ)} step size	0.50%	0.60%	0.70%	Vddq	2
	V	-11	0	11	mV	3, 4, 6
V REF(DQ),set_tol	VREF(DQ) Set tolerance	-1.1	0	1.1	mV	3, 5, 7
^t V _{REF} _TIME-SHORT		-	-	100	ns	8
^t V _{REF} _TIME-MIDDLE		_	_	200	ns	12
^t V _{REF} _TIME-LONG	VREF(DQ) Step time	_	-	250	ns	9
^t VREF_time_weak		_	_	1	ms	13, 14
VREF(DQ)_val_tol	V _{REF(DQ)} valid tolerance	-0.10%	0.00%	0.10%	VDDQ	10

Notes:

1. $V_{\text{REF}(DQ)}$ DC voltage referenced to $V_{\text{DDQ}(DC)}$.

2. $V_{\text{REF}(DQ)}$ step size increment/decrement range. $V_{\text{REF}(DQ)}$ at DC level.

3. VREF(DQ), new = VREF(DQ), old + n × VREF(DQ), step; n = number of steps; if increment, use "+"; if decrement, use "-".

4. The minimum value of V_{REF(DQ)} setting tolerance = V_{REF(DQ),new} - 11mV. The maximumvalue of V_{REF(DQ)} setting tolerance = V_{REF(DQ),new} + 11mV. For n > 4.

5. The minimum value of $V_{\text{REF}(DQ)}$ setting tolerance = $V_{\text{REF}(DQ),\text{new}}$ - 1.1mV. The maximum value of $V_{\text{REF}(DQ)}$ setting tolerance = $V_{\text{REF}(DQ),\text{new}}$ + 1.1mV. For n ≤ 4.

6. Measured by recording the minimum and maximum values of the V_{REF(DQ)} output overthe range, drawing a straight linebetween those points and comparing all otherV_{REF(DQ)} output settings to that line.

7. Measured by recording the minimum and maximum values of the $V_{REF(DQ)}$ output acrossfour consecutive steps (n = 4), drawing a straight line between those points and comparingall other $V_{REF(DQ)}$ output settings to that line.

8. Time from MRW command to increment or decrement one step size for $V_{\text{REF}(DQ)}$.

9. Time from MRW command to increment or decrement V_{REF,min} to V_{REF,max} or V_{REF,max} toV_{REF,min} change across the V_{REF(DQ)} Range in V_{REF(DQ)} Voltage.

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

- 10. Only applicable for DRAM component level test/characterization purposes. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will be characterized at the component level.
- 11. DRAM range-0 or range-1 set by MR14 OP[6].
- 12. Time from MRW command to increment or decrement more than one step size up to afull range of V_{REF} voltage within the same V_{REF(DQ)} range.
- 13. Applies when VRCG high current mode is not enabled, specified by MR13 [OP3] = 0.
- 14. ^tV_{REF}_time_weak covers all V_{REF(DQ)} Range and Value change conditions are applied to^tV_{REF}_TIME-SHOR/MIDDLE/LONG.

4.29 Command Bus Training Command Bus Training Mode

The command bus must be trained before enabling termination for high-frequency operation. The device provides an internal $V_{\text{REF(CA)}}$ that defaults to a level suitable for unterminated, low-frequency operation, but the $V_{\text{REF(CA)}}$ must be trained to achieve suitable receiver voltage margin for terminated, high-frequency operation.

The training mode described here centers the internal $V_{REF(CA)}$ in the CA data eye and atthe same time allows for timing adjustments of the CS and CA signals to meet setup/hold requirements. Because it can be difficult to capture commands prior to training the CA inputs, the training mode described here uses a minimum of external commandsto enter, train, and exit the CA bus training mode.

The die has a bond-pad (ODT_CA) to control the command bus termination for multirankoperation. Other mode register bits are provided to fine tune termination controlin a variety of system configuration. See On-Die Termination for more information.

The device uses frequency set points to enable multiple operating settings for the die.

The device defaults to FSP-OP[0] at power-up, which has the default settings to operate un-terminated, low-frequency environments. Prior to training, the terminationshould be enabled for one die in each channel by setting MR13 OP[6] = 1b (FSP-WR[1])and setting all other mode register bits for FSP-OP[1] to the desired settings for highfrequencyoperation. Upon training entry, the device will automatically switch to FSPOP[1] and use the high-frequency settings during training (See the Command BusTraining Entry Timing figure for more information on FSP-OP register sets). Upon trainingexit, the device will automatically switch back to FSP-OP[0], returning to a "knowngood"state for unterminated, low-frequency operation.

To enter command bus training mode, issue a MRW-1 command followed by a MRW-2command to set MR13 OP[0] = 1b (command bus training mode enabled).

After time ^tMRD, CKE may be set LOW, causing the device to switch to FSP-OP[1], andcompleting the entry into command bus training mode.

A status DQS_t, DQS_c, DQ, and DMI are as noted below; the DQ ODT state will be followed by FREQUENCY SET POINT function except in the case of output pins.

- DQS_t[0], DQS_c[0] become input pins for capturing DQ[6:0] levels by toggling.
- DQ[5:0] become input pins for setting VREF(CA) level.
- DQ[6] becomes an input pin for setting V_{REF(CA)} range.
- DQ[7] and DMI[0] become input pins, and their input level is valid or floating.
- DQ[13:8] become output pins to feedback, capturing value via the command bus using the CS signal.
- DQS_t[1], DQS_c[1], DMI[1], and DQ[15:14] become output pins or are disabled, meaning the device may be driven to a valid level or may be left floating.

At time ^tCAENT later, the device may change its V_{REF(CA)} range and value using inputsignals DQS_t[0], DQS_c[0], and DQ[6:0] from existing value that is set via MR12OP[6:0]. The mapping between MR12 OP code and DQs is shown below. At least oneV_{REF(CA)} setting is required before proceeding to the next training step.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-109: Mapping MR12 Op Code and DQ Numbers

				Mapping			
MR12 OP code	OP6	OP5	OP4	OP3	OP2	OP1	OP0
DQ number	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0

The new V_{REF(CA)} value must "settle" for time ^tVREFCA_Long before attempting to latchCA information.

Note:

If DQ ODT is enabled in MR11-OP[2:0], then the SDRAM will terminate the DQlanes during command bus training whenentering V_{REF(CA)} range and values onDQ[6:0].

To verify that the receiver has the correct $V_{REF(CA)}$ setting, and to further train the CA eyerelative to clock (CK), values latchedat the receiver on the CA bus are asynchronouslyoutput to the DQ bus.

To exit command bus training mode, drive CKE HIGH, and after time ^tVREFCA_Long,issue the MRW-1 command followed by the MRW-2 command to set MR13 OP[0] = 0b.After time tMRW, the device is ready for normal operation. After training exit, the

devicewill automatically switch back to the FSP-OP registers that were in use prior to training.

Command bus training (CBT) may be executed from the idle or self refresh state. Whenexecuting CBT within the self refreshstate, the device must not be in a power-downstate (for example, CKE must be HIGH prior to training entry). CBT entry and exitis thesame, regardless of the state from which CBT is initiated.

Training Sequence for Single-Rank Systems

The sequence example shown here assumes an initial low-frequency, non-terminatingoperating point training a high-frequency, terminating operating point. The **bold text**shows high-frequency instructions. Any operating point may be trained from anyknown good operating point.

- 1. Set MR13 OP[6] = 1b to enable writing to frequency set point 1 (FSP-WR[1]) (orFSP-OP[0]).
- 2. Write FSP-WR[1] (or FSP-WR[0]) registers for all channels to set up high-frequencyoperating parameters.
- 3. Issue MRW-1 and MRW-2 commands to enter command bus training mode.
- 4. Drive CKE LOW, and change CK frequency to the high-frequency operatingpoint.
- 5. Perform command bus training (V_{REF(CA)}, CS, and CA).
- 6. **Exit training by driving CKE HIGH**, change CK frequency to the low-frequencyoperating point, and issueMRW-1 and MRW-2 commands. When CKE is drivenHIGH, the device will automatically switch back to theFSP-OP registers that werein use prior to training (trained values are not retained).
- 7. Write the trained values to FSP-WR[1] (or FSP-WR[0]) by issuing MRW-1 and MRW-2 commands to the SDRAMand setting all applicable mode register parameters.
- 8. Issue MRW-1 and MRW-2 commands to switch the terminating rank to FSP-OP[1](or FSP-OP[0]), to turn ontermination, and change CK frequency to the high-frequencyoperating point. At this point the commandbus is trained and you mayproceed to other training or normal operation.

Training Sequence for Multiple-Rank Systems

The sequence example shown here is assuming an initial low-frequency operatingpoint, training a high-frequency operating point. The **bold text** shows high-frequency instructions. Any operating point may be trained from any known good operating point.

1. Set MR13 OP[6] = 1b to enable writing to frequency set point 1 (FSP-WR[1]) (orFSP-WR[0]).

- 2. Write FSP-WR[1] (or FSP-WR[0]) registers for all channels and ranks to set uphigh-frequency operatingparameters.
- 3. Read MR0 OP[7] on all channels and ranks to determine which die are terminating, signified by MR0 OP[7] = 1b.
- 4. Issue MRW-1 and MRW-2 commands to enter command bus training mode on the terminating rank.
- 5. Drive CKE LOW on the terminating rank (or all ranks), and change CK frequencyto the high-frequencyoperating point.
- 6. Perform command bus training on the terminating rank (V_{REF(CA)}, CS, and CA).

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

- 7. Exit training by driving CKE HIGH, change CK frequency to the low-frequencyoperating point, and issueMRW-1 and MRW-2 commands to write the trainedvalues to FSP-WR[1] (or FSP-WR[0]). When CKE is drivenHIGH, the SDRAM willautomatically switch back to the FSP-OP registers that were in use prior to training(trainedvalues are not retained by the device).
- 8. Issue MRW-1 and MRW-2 commands to enter training mode on the non-terminatingrank (but keep CKE HIGH).
- 9. Issue MRW-1 and MRW-2 commands to switch the terminating rank to FSP-OP[1](or FSP-OP[0]), to turn ontermination, and change CK frequency to the high-frequencyoperating point.
- 10. Drive CKE LOW on the non-terminating (or all) ranks. The non-terminatingrank(s) will now be usingFSP-OP[1] (or FSP-OP[0]).
- 11. Perform command bus training on the non-terminating rank (V_{REF(CA}), CS, andCA).
- 12. Issue MRW-1 and MRW-2 commands to switch the terminating rank to FSPOP[0] (or FSP-OP[1]) to turnoff termination.
- 13. Exit training by driving CKE HIGH on the non-terminating rank, change CK frequencyto the low-frequencyoperating point, and issue MRW-1 and MRW-2 commands.When CKE is driven HIGH, the device willautomatically switch back to the FSP-OP registers that were in use prior to training (that is, trained values arenotretained by the device).
- 14. Write the trained values to FSP-WR[1] (or FSP-WR[0]) by issuing MRW-1 and MRW-2 commands and setting allapplicable mode register parameters.
- 15. Issue MRW-1 and MRW-2 commands to switch the terminating rank to FSP-OP[1](or FSP-OP[0]), to turn ontermination, and change CK frequency to the high-frequencyoperating point. At this point the commandbus is trained for both ranksand the user may proceed to other training or normal operation.

Relation Between CA Input Pin and DQ Output Pin

 Table 4-110: Mapping of CA Input Pin and DQ Output Pin

			Ma	apping		
CA number	CA5	CA4	CA3	CA2	CA1	CA0
DQ number	DQ13	DQ12	DQ11	DQ10	DQ9	DQ8

8GB eMMC+ 8Gb LPDDR4 SDRAM

XIN 🕱 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-96: Command Bus Training Mode Entry – CA Training Pattern I/O with V_{REF(CA)} Value Update

Notes:

1. After ^tCKELCK, the clock can be stopped or the frequency changed any time.

- 2. The input clock condition should be satisfied ^tCKPRECS and ^tCKPSTCS.
- 3. Continue to drive CK, and hold CA and CS LOW, until ^tCKELCK after CKE is LOW (which disables command decoding).
- 4. The device may or may not capture the first rising edge of DQS_t/DQS_c due to an unstablefirst rising edge. Therefore, atleast two consecutive pulses of DQS signal input isrequired every for DQS input signal while capturing DQ[6:0] signals. Thecaptured valueof the DQ[6:0] signal level by each DQS edge may be overwritten at any time and thedevice will temporarilyupdate the V_{REF(CA)} setting of MR12 after time ^tVREFCA_Long.
- 5. ^tVREFCA_Long may be reduced to ^tVREFCA_Short if the following conditions are met: 1)The new V_{REF} setting is a singlestep above or below the old V_{REF} setting; 2) The DQSpulses a single time, or the new V_{REF} setting value on DQ[6:0] is static and meets^tDS,train/ ^tDH,train for every DQS pulse applied.
- 6. When CKE is driven LOW, the device will switch its FSP-OP registers to use the alternate(non-active) set. For example, if the device is currently using FSP-OP[0], then it willswitch to FSP-OP[1] when CKE is driven LOW. All operating parameters should be writtento the alternate mode registers before entering command bus training to ensure that ODT settings, RL/WL/nWR setting, and so forth, are set to the correct values.
- 7. When CKE is driven LOW in command bus training mode, the device will change operation to the alternate FSP, that is, theinverse of the FSP programmed in the FSP-OP moderegister.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-97: Consecutive V_{REF(CA)} Value Update

Notes:

- 1. After ^tCKELCK, the clock can be stopped or the frequency changed any time.
- 2. The input clock condition should be satisfied ^tCKPRECS and ^tCKPSTCS.
- 3. Continue to drive CK, and hold CA and CS LOW, until ^tCKELCK after CKE is LOW (which disables command decoding).
- 4. The device may or may not capture the first rising edge of DQS_t/DQS_c due to an unstablefirst rising edge. Therefore, atleast two consecutive pulses of DQS signal input isrequired every for DQS input signal while capturing DQ[6:0] signals. Thecaptured valueof the DQ[6:0] signal level by each DQS edge may be overwritten at any time and thedevice will temporarilyupdate the V_{REF(CA)} setting of MR12 after time ^tVREFCA_Long.
- 5. ^tVREFCA_Long may be reduced to ^tVREFCA_Short if the following conditions are met: 1)The new V_{REF} setting is a singlestep above or below the old V_{REF} setting; 2) The DQSpulses a single time, or the new V_{REF} setting value on DQ[6:0] is static and meets^tDS,train/^tDH,train for every DQS pulse applied.
- 6. When CKE is driven LOW, the device will switch its FSP-OP registers to use the alternate(non-active) set. For example, if the device is currently using FSP-OP[0], then it willswitch to FSP-OP[1] when CKE is driven LOW. All operating parameters should be writtento the alternate mode registers before entering command bus training to ensure that ODT settings, RL/WL/nWR setting, and so forth, are set to the correct values.
- 7. When CKE is driven LOW in command bus training mode, the device will change operation to the alternate FSP, that is, theinverse of the FSP programmed in the FSP-OP moderegister.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-98: Command Bus Training Mode Exit with Valid Command

Notes:

- 1. The clock can be stopped or the frequency changed any time before ^tCKCKEH. CK mustmeet ^tCKCKEH before CKE isdriven HIGH. When CKE is driven HIGH, the clock frequencymust be returned to the original frequency (that is, thefrequency corresponding to theFSP at command bus training mode entry.
- 2. CS and CA[5:0] must be deselected (LOW) ^tCKCKEH before CKE is driven HIGH.
- 3. When CKE is driven HIGH, ODT_CA will revert to the state/value defined by FSP-OP priorto command bus training modeentry, that is, the original frequency set point (FSP-OP,MR13-OP[7]). For example, if the device was using FSP-OP[1] fortraining, then it willswitch to FSP-OP[0] when CKE is driven HIGH.
- 4. Training values are not retained by the device and must be written to the FSP-OP registerset before returning to operation atthe trained frequency. For example, V_{REF(CA)} willreturn to the value programmed in the original set point.

5. When CKE is driven HIGH, the device will revert to the FSP in operation at command bustraining mode entry.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

Notes:

- 1. The clock can be stopped or the frequency changed any time before ^tCKCKEH. CK mustmeet ^tCKCKEH before CKE is driven HIGH, the clock frequencymust be returned to the original frequency (that is, thefrequency corresponding to theFSP at command bus training mode entry.
- 2. CS and CA[5:0] must be deselected (LOW) ^tCKCKEH before CKE is driven HIGH.
- 3. When CKE is driven HIGH, ODT_CA will revert to the state/value defined by FSP-OP prior command bus training modeentry, that is, the original frequency set point (FSP-OP,MR13-OP[7]). For example, if the device was using FSP-OP[1] fortraining, then it willswitch to FSP-OP[0] when CKE is driven HIGH.
- 4. Training values are not retained by the device and must be written to the FSP-OP registerset before returning to operation atthe trained frequency. For example, V_{REF(CA)} willreturn to the value programmed in the original set point.
- 5. When CKE is driven HIGH, the device will revert to the FSP in operation at command busraining mode entry.

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.30 Write Leveling Mode Register Write-WR Leveling Mode

To improve signal-integrity performance, the device provides a write leveling feature tcompensate for CK-to-DQS timing skew, affecting timing parameters such as 'DQSS'DSS, and 'DSH. The memory controller uses the write leveling feature to receive feedbacfrom the device, enabling it to adjust the clock-to-data strobe signal relationshipfor each DQS_t/DQS_c signal pair. The device samples the clock state with the risinedge of DQS signals and asynchronously feeds back to the memory controller. Thmemory controller references this feedback to adjust the clock-to-data strobe signal relationshipfor each DQS_t/DQS_c signal relationshipfor each DQS_t/DQS_c signal relationshipfor each DQS_t/DQS_c signal pair.

All data bits (DQ[7:0] for DQS[0] and DQ[15:8] for DQS[1]) carry the training feedback the controller. Both DQS signals in each channel must be leveled independently. Writeleveling entry/exit is independent between channels for dual channel devices.

The device enters write leveling mode when mode register MR2-OP[7] is set HIGH.When entering write leveling mode, the state of the DQ pins is undefined. During writleveling mode, only DESELECT commands, or a MRW command to exit the WRITLEVELING operation, are allowed. Depending on the absolute values of tQSL and tQSin the application, the value of tDQSS may have to be better than the limits provided in the AC Timing Parameters section in order to satisfy the ^tDSS and tDSH specifications.Upon completion of the WRITE LEVELING operation, the device exits write levelinmode when MR2-OP[7] is reset LOW.

Write leveling should be performed before write training (DQS2DQ training).

Write Leveling Procedure

- 1. Enter write leveling mode by setting MR2-OP[7]=1.
- 2. Once in write leveling mode, DQS_t must be driven LOW and DQS_c HIGH after adelay of ^tWLDQSEN.
- 3. Wait for a time ^tWLDQSEN before providing the first DQS signal input. The delaytime ^tWLMRD(MAX) iscontroller-dependent.
- 4. The device may or may not capture the first rising edge of DQS_t due to an unstablefirst rising edge; therefore, atleast two consecutive pulses of DQS signal inputis required for every DQS input signal during write training mode. The capturedclock level for each DQS edge is overwritten, and the device provides asynchronousfeedback on allDQ bits after time tWLO.
- 5. The feedback provided by the device is referenced by the controller to incrementor decrement the DQS_t and/orDQS_c delay settings.
- 6. Repeat steps 4 and 5 until the proper DQS_t/DQS_c delay is established.
- 7. Exit write leveling mode by setting MR2-OP[7] = 0.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Note:

1. Clock can be stopped except during DQS toggle period (CK_t = LOW, CK_c = HIGH). However, a stable clock prior to sampling is required to ensure timing accuracy.

Note:

1. Clock can be stopped except during DQS toggle period (CK_t = LOW, CK_c = HIGH). However, a stable clock prior to sampling is required to ensure timing accuracy.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Input Clock Frequency Stop and Change

XIN 🕱 CUN

The input clock frequency can be stopped or changed from one stable clock rate to anotherstable clock rate during write leveling mode. The frequency stop or change timingis shown below.

Figure 4-102: Clock Stop and Timing During Write Leveling

Notes:

1. CK_t is held LOW and CK_c is held HIGH during clock stop.

2. CS will be held LOW during clock clock stop.

Table 4-111: Write Leveling Timing Parameters

Parameter	Symbol	Min/Max	Value	Units	
DQS_t/DQS_c delay after write leveling mode		MIN	20	tCK	
is programmed	WEDQSEN	MAX	-	CK	
Write proomble for write leveling		MIN	20	tok	
while preamble for while leveling	WLWPRE	MAX	_	۰CK	
First DQS_t/DQS_c edge after write leveling		MIN	40	^t CK	
mode is programmed	WLWRD	MAX	-		
		MIN	0		
vvnite leveling output delay	WLO	MAX	Value 20 - 20 - 20 - 40 - 40 - 40 - 40 - 40 - 40 - 0 20 Mode Register Timing Paramet MAX (7.5ns, 4nCK) - MAX (7.5ns, 4nCK) - MAX (7.5ns, 4nCK)	ns	
MODE REGISTER SET command delay	^t MRD	Refer to Mode	Register Timing Paramet	er Table	
Valid alask as winement before DOC to pale		MIN	MAX (7.5ns, 4nCK)		
Valid clock requirement before DQS toggle	$ \frac{Symbol}{Min/Max} Value \\ \hline Min/Max Value \\ \hline Max - \\ \hline Min Value \\ \hline Min Value \\ \hline Min Value \\ \hline Max Value \\ \hline Min Value \\ \hline Max Value \\ \hline Min Value \\ \hline Min Value \\ \hline Max Value $	-			
Valid alock as winement often DOC to gale	ICKRETROS	MIN	MAX (7.5ns, 4nCK)		
valid clock requirement after DQS toggle	CRESIDUS	MAX	_		
XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-112: Write Leveling Setup and Hold Timing

Parameter	Symbol	Min/Max		Data Rate		Unit
Farameter	Symbol	IVIII/IVIdX	1600	2400	3200	Unit
Writ1e leveling hold time	^t WLH	MIN	150	100	75	ps
Write leveling setup time	^t WLS	MIN	150	100	75	ps
Write leveling input validwindow	tWLIVW	MIN	240	160	120	ps

Notes:

1. In addition to the traditional setup and hold time specifications, there is value in a invalidwindow-based specification for writeleveling training. As the training is based oneach device, worst case process skews for setup and hold do not make sense toclosetiming between CK and DQS.

 ^tWLIVW is defined in a similar manner to TdIVW_total, except that here it is a DQS invalidwindow with respect to CK. Thiswould need to account for all voltage and temperature(VT) drift terms between CK and DQS within the device that affect thewrite levelinginvalid window.

The figure below shows the DQS input mask for timing with respect to CK. The "total"mask (^tWLIVW) defines the time the input signal must not encroach in order for theDQS input to be successfully captured by CK. The mask is a receiver property and it isnot the valid data-eye.

Figure 4-103: DQS_t/DQS_c to CK_t/CK_c Timings at the Pins Referenced from the Internal Latch

XIN 🕸 CUN

4.31 MULTIPURPOSE Operation

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

The device uses the MULTIPURPOSE command to issue a NO OPERATION (NOP) commandand to access various training modes. The MPC command is initiated with CS,and CA[5:0] asserted to the proper state at the rising edge of CK, as defined by the CommandTruth Table. The MPC command has seven operands (OP[6:0]) that are decoded to execute specific commands in the SDRAM. OP[6] is a special bit that is decoded on the first rising CK edge of the MPC command. When OP[6] = 0, the device executes aNOP command, and when OP[6] = 1, the device further decodes one of several trainingcommands.

When OP[6] = 1 and the training command includes a READ or WRITE operation, theMPC command must be followed immediately by a CAS-2 command. For training commandsthat read or write, READ latency (RL) and WRITE latency (WL) are counted from the second rising CK edge of the CAS-2 command with the same timing relationship as a typical READ or WRITE command. The operands of the CAS-2 command following aMPC READ/WRITE command must be driven LOW. The following MPC commandsmust be followed by a CAS-2 command:

- WRITE-FIFO
- READ-FIFO
- READ DQ CALIBRATION

All other MPC commands do not require a CAS-2 command, including the following: • NOP

- START DQS OSCILLATOR
- STOP DQS OSCILLATOR
- ZQCAL START
- ZQCAL LATCH

Table 4-113: MPC Command Definition

	C	KE									
	CK_t									CK_t	
SDR Command	(n-1)	CK_t(n)	CS	CA0	CA1	CA2	CA3	CA4	CA5	Edge	Notes
MPC	н	н	н	L	L	L	L	L	OP6	_ 1	1, 2
(Train, NOP)			L	OP0	OP1	OP2	OP3	OP4	OP5	2	

Notes:

1. See the Command Truth Table for more information.

2.MPC commands for READ or WRITE TRAINING operations must be immediately followedby the CAS-2 command, consecutively, without any other commands in between. TheMPC command must be issued before issuing the CAS-2command.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN	XC	CUN
-----	----	-----

Table 4-114: MPC Commands								
Function	Operand	Data						
Training Modes	OP[6:0]	0XXXXXb: NOP 100001b: READ-FIFO: READ-FIFO supports only BL16 operation 1000011b: READ DQ CALIBRATION (MR32/MR40) 1000101b: RFU 1000111b: WRITE-FIFO: WRITE-FIFO supports only BL16 operation 1001001b: RFU 1001011b: START DQS OSCILLATOR 1001101b: STOP DQS OSCILLATOR 1001111b: ZQCAL START 1010001b: ZQCAL LATCH All Others: Reserved						

Notes:

1. See command truth table for more information.

2. MPC commands for READ or WRITE TRAINING operations must be immediately followedby CAS-2 commandconsecutively

without any other commands in-between. MPC commandmust be issued first before issuing the CAS-2command.

3. WRITE-FIFO and READ-FIFO commands will only operate as BL16, ignoring the burstlength selected by MR1 OP[1:0].

Figure 4-104: WRITE-FIFO – ^tWPRE = 2nCK, ^tWPST = 0.5nCK

Notes:

- 1. MPC[WRITE-FIFO] can be executed with a single bank or multiple banks active, duringrefresh or during self refresh, withCKE HIGH.
- 2. Write-1 to MPC is shown as an example of command-to-command timing for MPC. Timingfrom Write-1 toMPC[WRITE-FIFO] is ^tWRWTR.
- 3. Seamless MPC[WRITE-FIFO] commands may be executed by repeating the command every^tCCD time.
- 4. MPC[WRITE-FIFO] uses the same command-to-data timing relationship (WL, ^tDQSS, ^tDQS2DQ) as a WRITE-1 command.
- 5. A maximum of five MPC[WRITE-FIFO] commands may be executed consecutively without corrupting FIFO data. The sixthMPC[WRITE-FIFO] command will overwrite the FIFO datafrom the first command. If fewer than five MPC[WRITE-FIFO] commands are executed, then the remaining FIFO locations will contain undefined data.
- 6. For the CAS-2 command following an MPC command, the CAS-2 operands must be drivenLOW.
- 7. To avoid corrupting the FIFO contents, MPC[READ-FIFO] must immediately followMPC[WRITE-FIFO]/CAS-2 without anyother commands in-between. See Write Trainingsection for more information on FIFO pointer behavior.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-105: READ-FIFO – 'WPRE = 2nCK, 'WPST = 0.5nCK, 'RPRE = Toggling, 'RPST = 1.5nCK

Notes:

XIN 🕱 CUN

- 1. MPC[WRITE-FIFO] can be executed with a single bank or multiple banks active, duringrefresh or during self refresh withCKE HIGH.
- 2. Seamless MPC[READ-FIFO] commands may be executed by repeating the command every^tCCD time.
- 3. MPC[READ-FIFO] uses the same command-to-data timing relationship (RL, ^tDQSCK) as aREAD-1 command.
- 4. Data may be continuously read from the FIFO without any data corruption. After fiveMPC[READ-FIFO] commands, the FIFOpointer will wrap back to the first FIFO and continueadvancing. If fewer than five MPC[WRITE-FIFO] commands were executed, then the MPC[READ-FIFO] commands to those FIFO locations will return undefined data. SeeWrite Training formore information on the FIFO pointer behavior.
- 5. For the CAS-2 command immediately following an MPC command, the CAS-2 operandsmust be driven LOW.
- 6. DMI[1:0] signals will be driven if WR-DBI, RD-DBI, or DM is enabled in the mode registers. See Write Training for moreinformation on DMI behavior.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-106: READ-FIFO – 'RPRE = Toggling, 'RPST = 1.5nCK

Notes:

- 1. MPC[WRITE-FIFO] can be executed with a single bank or multiple banks active, duringrefresh or during self refresh withCKE HIGH.
- 2. MPC[READ-FIFO] to READ-1 operation is shown as an example of command-to-commandtiming for MPC. Timing fromMPC[READ-FIFO] command to read is tRTRRD.
- 3. Seamless MPC[READ-FIFO] commands may be executed by repeating the command every^tCCD time.
- 4. MPC[READ-FIFO] uses the same command-to-data timing relationship (RL, ^tDQSCK) as aREAD-1 command.
- 5. Data may be continuously read from the FIFO without any data corruption. After fiveMPC[READ-FIFO] commands, the FIFOpointer will wrap back to the first FIFO and continueadvancing. If fewer than five MPC[WRITE-FIFO] commands are executed, then theMPC[READ-FIFO] commands to those FIFO locations will return undefined data. SeeWrite Training formore information on the FIFO pointer behavior.
- 6. For the CAS-2 command immediately following an MPC command, the CAS-2 operandsmust be driven LOW.
- 7. DMI[1:0] signals will be driven if WR-DBI, RD-DBI, or DM is enabled in the mode registers. See Write Training for moreinformation on DMI behavior.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕸 CUN

Table 4-115: Timing C	onstraints for Training Commands			
Previous Command	Next Command	Minimum Delay	Unit	Notes
	MPC[WRITE-FIFO]	^t WRWTR	nCK	1
	MPC[READ-FIFO]	Not allowed	_	2
VVR/MVVR -	MPC[READ DQ CALIBRATION]	WL + RU(^t DQSS(MAX)/ ^t CK) + BL/2 + RU(^t WTR/ ^t CK)	nCK	
	MPC[WRITE-FIFO]	^t RTRRD	nCK	3
RD/MRR	MPC[READ-FIFO]	Not allowed	_	2
	MPC[READ DQ CALIBRATION]	^t RTRRD	nCK	3
	WR/MWR	Not allowed	_	2
	MPC[WRITE-FIFO]	^t CCD	nCK	
	RD/MRR	Not allowed	-	2
	MPC[READ-FIFO]	WL + RU(^t DQSS(MAX)/ ^t CK) + BL/2 + RU(^t WTR/ ^t CK)	nCK	
	MPC[READ DQ CALIBRATION]	Not allowed		2
	WR/MWR	^t RTRRD	nCK	3
	MPC[WRITE-FIFO]	^t RTW	nCK	4
MPC[READ-FIFO]	RD/MRR	^t RTRRD	nCK	3
	MPC[READ-FIFO]	^t CCD	nCK	
	MPC[READ DQ CALIBRATION]	^t RTRRD	nCK	3
	WR/MWR	^t RTRRD	nCK	3
	MPC[WRITE-FIFO]	^t RTRRD	nCK	3
	RD/MRR	^t RTRRD	nCK	3
	MPC[READ-FIFO]	Not allowed	-	2
	MPC[READ DQ CALIBRATION]	^t CCD	nCK	

Notes:

1. ^tWRWTR = WL + BL/2 + RU(^tDQSS(MAX)/ ^tCK) + MAX(RU(7.5ns/^tCK), 8nCK).

2. No commands are allowed between MPC[WRITE-FIFO] and MPC[READ-FIFO] except theRW commands related to trainingparameters.

3. t RTRRD = RL + RU(t DQSCK(MAX)/ t CK) + BL/2 + RD(t RPST) + MAX(RU(7.5ns/ t CK), 8nCK).

4. In case of DQ ODT disable MR11 OP[2:0] = 000b,

^tRTW = RL + RU(tDQSCK(MAX)/^tCK) + BL/2 - WL + tWPRE + RD(^tRPST).

In case of DQ ODT enable MR11 OP[2:0] \neq 000b,

 ${}^{t}RTW = RL + RU(tDQSCK(MAX)/{}^{t}CK) + BL/2 + RD({}^{t}RPST) - ODTLon - RD({}^{t}ODTon(MIN)/{}^{t}CK) + 1.$

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.32 Read DQ Calibration Training

The READ DQ CALIBRATION TRAINING function outputs a 16-bit, user-defined patternon the DQ pins. Read DQ calibration is initiated by issuing a MPC[READ DQ CALIBRATION]command followed by a CAS-2 command, which causes the device to drive the contents of MR32, followed by the contents of MR40 on each of DQ[15:0] and DMI[1:0]. The pattern can be inverted on selected DQ pins according to user-defined invert masks written to MR15 and MR20.

Read DQ Calibration Training Procedure

1. Issue MRW commands to write MR32 (first eight bits), MR40 (second eight bits), MR15 (eight-bit invert mask forbyte 0), and MR20 (eight-bit invert mask for byte1).

In the alternative, this step could be replaced with the default pattern:

- MR32 default = 5Ah
- MR40 default = 3Ch
- MR15 default = 55h
- MR20 default = 55h
- 2. Issue an MPC command, followed immediately by a CAS-2 command.
 - Each time an MPC command, followed by a CAS-2, is received by the device, a16-bit data burst will drive the eight bits programmed in MR32 followed by the eight bits programmed in MR40 on all I/O pins after the currently set RL.
 - The data pattern will be inverted for I/O pins with a 1 programmed in the correspondinginvert mask moderegister bit (see table below).
 - The pattern is driven on the DMI pins, but no DATA BUS INVERSION function isenabled, even if read DBI isenabled in the mode register.
 - The MPC command can be issued every ^tCCD seamlessly, and ^tRTRRD delay isrequired between ARRAYREAD command and the MPC command as well thedelay required between the MPC command and an ARRAYREAD.
 - The operands received with the CAS-2 command must be driven LOW.

3. DQ

Read DQ calibration training can be performed with any or no banks active duringrefresh or during self refreshwith CKE HIGH.

DQ pin	0	1	2	3	DMI0	4	5	6	7
MR15 bit	0	1	2	3	N/A	4	5	6	7
DQ pin	8	9	10	11	DMI1	12	13	14	15
MR20 bit	0	1	2	3	N/A	4	5	6	7

Table 4-116: Invert Mask Assignments

8GB eMMC+ 8Gb LPDDR4 SDRAM

XIN 🕱 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. Read-1 to MPC operation is shown as an example of command-to-command timing. Timingfrom Read-1 to MPC commandis ^tRTRRD.
- 2. MPC uses the same command-to-data timing relationship (RL, ^tDQSCK, ^tDQSQ) as aRead-1 command.
- 3. BL = 16, Read preamble: Toggle, Read postamble: 0.5nCK.
- 4. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Figure 4-108: Read DQ Calibration Training Timing: Read DQ Calibration to Read DQ Calibration/Read

Notes:

- 1. MPC[READ DQ CALIBRATION] to MPC[READ DQ CALIBRATION] operation is shown as anexample of command-to-command timing.
- 2. MPC[READ DQ CALIBRATION] to READ-1 operation is shown as an example of command-to-command timing.
- 3. MPC[READ DQ CALIBRATION] uses the same command-to-data timing relationship (RL,^tDQSCK, ^tDQSQ) as a READ-1 command.
- 4. Seamless MPC[READ DQ CALIBRATION] commands may be executed by repeating the command every ^tCCD time.
- 5. Timing from MPC[READ DQ CALIBRATION] command to READ-1 is tRTRRD.
- 6. BL = 16, Read preamble: Toggle, Read postamble: 0.5nCK.
- 7. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Read DQ Calibration Training Example

An example of read DQ calibration training output is shown in table below. This showsthe 16-bit data pattern that will be driven on each DQ in byte 0 when one READ DQCALIBRATION TRAINING command is executed. This output assumes the followingmode register values are used:

- MR32 = 1CH
- MR40 = 59H
- MR15 = 55H
- MR20 = 55H

Dim								Bit Sec	uence	\rightarrow							
Pin	Invert	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DQ0	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ1	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DQ2	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ3	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DMI0	Never	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DQ4	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ5	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DQ6	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ7	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DQ8	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ9	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DQ10	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ11	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DMI1	Never	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DQ12	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ13	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0
DQ14	Yes	1	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1
DQ15	No	0	1	0	1	1	0	0	1	0	0	0	1	1	1	0	0

Table 4-117: Read DQ Calibration Bit Ordering and Inversion Example

Notes:

 The patterns contained in MR32 and MR40 are transmitted on DQ[15:0] and DMI[1:0]when read DQ calibration is initiatedvia a MPC[READ DQ CALIBRATION] command. Thepattern transmitted serially on each data lane, organized little endiansuch that the loworderbit in a byte is transmitted first. If the data pattern is 27H, then the first bit transmittedwith is a 1,followed by 1, 1, 0, 0, 1, 0, and 0. The bit stream will be 00100111 →.

2. MR15 and MR20 may be used to invert the MR32/MR40 data pattern on the DQ pins.See MR15 and MR20 for moreinformation. Data is never inverted on the DMI[1:0] pins.

3. DMI [1:0] outputs status follows MR Setting vs. DMI Status table.

4. No DATA BUS INVERSION (DBI) function is enacted during read DQ calibration, even ifDBI is enabled in MR3-OP[6].

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

DM Function MR13 OP[5]	WRITE DBIdc Function MR3 OP[7]	READ DBIdc Function MR3 OP[6] DMI	Status
1: Disable	0: Disable	0: Disable	High-Z
1: Disable	1: Enable	0: Disable	The data pattern is transmitted
1: Disable	0: Disable	1: Enable	The data pattern is transmitted
1: Disable	1: Enable	1: Enable	The data pattern is transmitted
0: Enable	0: Disable	0: Disable	The data pattern is transmitted
0: Enable	1: Enable	0: Disable	The data pattern is transmitted
0: Enable	0: Disable	1: Enable	The data pattern is transmitted
0: Enable	1: Enable	1: Enable	The data pattern is transmitted

MPC[READ DQ CALIBRATION] After Power-Down Exit

Following the power-down state, an additional time, ^tMRRI, is required prior to issuingthe MPC[READ DQ CALIBRATION] command. This additional time (equivalent to^tRCD) is required in order to be able to maximize power-down current savings by allowingmore power-up time for the read DQ data in MR32 and MR40 data path after exitfrom standby, power-down mode.

Figure 4-109: MPC[READ DQ CALIBRATION] Following Power-Down State

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.33 Write Training

The device uses an unmatched DQS-DQ path to enable high-speed performance andsave power. As a result, the DQS strobe must be trained to arrive at the DQ latch centeralignedwith the data eye. The DQ receiver is located at the DQ pad and has a shorterinternal delay than the DQS signal. The DQ receiver will latch the data present on the DQ bus when DQS reaches the latch, and training is accomplished by delaying the DQsignals relative to DQS such that the data eye arrives at the receiver latch centered on the DQS transition.

Two modes of training are available:

- Command-based FIFO WR/RD with user patterns
- An internal DQS clock-tree oscillator, which determines the need for, and the magnitudeof, required training

The command-based FIFO WR/RD uses the MPC command with operands to enable this special mode of operation. When issuing the MPC command, if CA[5] is set LOW(OP[6] = 0), then the device will perform a NOP command. When CA[5] is set HIGH, the CA[4:0] pins enable training functions or are reserved for future use (RFU). MPC commands that initiate a read or write to the device must be followed immediately by aCAS-2 command. See the MPC Operation section for more information.

To perform write training, the controller can issue an MPC[WRITE-FIFO] commandwith OP[6:0] set, followed immediately by a CAS-2 command (CAS-2 operands shouldbe driven LOW) to initiate a WRITE-FIFO. Timings for MPC[WRITE-FIFO] are identicated WRITE commands, with WL timed from the second rising clock edge of the CAS-2command. Up to five consecutive MPC[WRITE-FIFO] commands with user-definedpatterns may be issued to the device, which will store up to 80 values (BL16 × 5) per pinthat can be read back via the MPC[READ-FIFO] command. (The WRITE/READ-FIFOPOINTER operation is described in a different section.

After writing data with the MPC[WRITE-FIFO] command, the data can be read backwith the MPC[READ-FIFO] command and results can be compared with "expected" datato determine whether further training (DQ delay) is needed. MPC[READ-FIFO] is initiated by issuing an MPC command, as described in the MPC Operation section, followedimmediately by a CAS-2 command (CAS-2 operands must be driven LOW). Timingsfor the MPC[READ-FIFO] command are identical to READ commands, with RLtimed from the second rising clock edge of the CAS-2 command.

READ-FIFO is nondestructive to the data captured in the FIFO; data may be read continuouslyuntil it is disturbed by another command, such as a READ, WRITE, or anotherMPC[WRITE-FIFO]. If fewer than five WRITE-FIFO commands are executed, unwrittenregisters will have undefined (but valid) data when read back.

For example: If five WRITE-FIFO commands are executed sequentially, then a series of READ-FIFO commands will read valid data from FIFO[0], FIFO[1]....FIFO[4] and thenwrap back to FIFO[0] on the next READ-FIFO. However, if fewer than five WRITE-FIFOcommands are executed sequentially (example = 3), then a series of READ-FIFO commandswill return valid data for FIFO[0], FIFO[1], and FIFO[2], but the next two READFIFOcommands will return undefined data for FIFO[3] and FIFO[4] before wrappingback to the valid data in FIFO[0].

The READ-FIFO pointer and WRITE-FIFO pointer are reset under the following conditions:

- Power-up initialization
- RESET_n asserted
- Power-down entry
- Self refresh power-down entry

The MPC[WRITE-FIFO] command advances the WRITE-FIFO pointer, and theMPC[READ-FIFO] advances the READ-FIFO pointer. Also any normal (non-FIFO) READoperation (RD, RDA) advances both WRITE-FIFO pointer and READ-FIFO pointer. Issuing(non-FIFO) READ operation command is inhibited during write training period. To keep the pointers aligned, the SoC memory controller must adhere to the following restrictionat the end of Write training period:

 $b = a + (n \times c)$

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Where:

'a' is the number of MPC[WRITE-FIFO] commands 'b' is the number of MPC[READ-FIFO] commands 'c' is the FIFO depth (= 5 for LPDDR4) 'n' is a positive integer, ≥0

Figure 4-110: WRITE-to-MPC[WRITE-FIFO] Operation Timing

Notes:

- 1. MPC[WRITE-FIFO] can be executed with a single bank or multiple banks active duringREFRESH or during SELF REFRESH with CKE HIGH.
- 2. Write-1 to MPC is shown as an example of command-to-command timing for MPC. Timingfrom Write-1 to MPC[WRITE-FIFO] is ^tWRWTR.
- 3. Seamless MPC[WR-FIFO] commands may be executed by repeating the command every^tCCD time.
- 4. MPC[WRITE-FIFO] uses the same command-to-data timing relationship (WL, ^tDQSS, ^tDQS2DQ) as a WRITE-1 command.
- 5. A maximum of five MPC[WRITE-FIFO] commands may be executed consecutively without corrupting FIFO data. The sixthMPC[WRITE-FIFO] command will overwrite the FIFO datafrom the first command. If fewer than five MPC[WRITE-FIFO] commands are executed, then the remaining FIFO locations will contain undefined data.
- 6. For the CAS-2 command following an MPC command, the CAS-2 operands must be drivenLOW.
- 7. To avoid corrupting the FIFO contents, MPC[READ-FIFO] must immediately followMPC[WRITE-FIFO]/CAS-2 without anyother commands disturbing FIFO pointers in between.FIFO pointers are disturbed by CKE LOW, WRITE, MASKED WRITE, READ, READDQ CALIBRATION, and MRR.
- 8. BL = 16, Write postamble = 0.5nCK.
- 9. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

XIN 🕸 CUN

- 1. MPC[WRITE-FIFO] can be executed with a single bank or multiple banks active during refreshor during self refresh with CKE HIGH.
- 2. MPC[WRITE-FIFO] to MPC[READ-FIFO] is shown as an example of command-to-commandtiming for MPC. Timing from MPC[WRITE-FIFO] to MPC[READ-FIFO] is specified in the command-to-command timing table.
- 3. Seamless MPC[READ-FIFO] commands may be executed by repeating the command every^tCCD time.
- 4. MPC[READ-FIFO] uses the same command-to-data timing relationship (RL, ^tDQSCK, ^tDQSQ) as a READ-1 command.
- 5. Data may be continuously read from the FIFO without any data corruption. After fiveMPC[READ-FIFO] commands, the FIFO pointer will wrap back to the first FIFO and continueadvancing. If fewer than five MPC[WRITE-FIFO] commands were executed, then the MPC[READ-FIFO] commands to those FIFO locations will return undefined data. SeeWrite Training for more information on the FIFO pointer behavior.
- 6. For the CAS-2 command immediately following an MPC command, the CAS-2 operandsmust be driven LOW.
- 7. DMI[1:0] signals will be driven if WR-DBI, RD-DBI, or DM is enabled in the mode registers. See Write Training section for more information on DMI behavior.
- 8. BL = 16, Write postamble = 0.5nCK, Read preamble: Toggle, Read postamble: 0.5nCK.
- 9. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Notes:

- 1. MPC[WRITE-FIFO] can be executed with a single bank or multiple banks active during refreshor during self refresh with CKE HIGH.
- MPC[READ-FIFO] to READ-1 operation is shown as an example of command-to-commandtiming for MPC. Timing from MPC[READ-FIFO] command to READ is 'RTRRD.
- 3. Seamless MPC[READ-FIFO] commands may be executed by repeating the command every^tCCD time.
- 4. MPC[READ-FIFO] uses the same command-to-data timing relationship (RL, ^tDQSCK, ^tDQSQ) as a READ-1 command.
- 5. Data may be continuously read from the FIFO without any data corruption. After fiveMPC[READ-FIFO] commands, the FIFO pointer will wrap back to the first FIFO and continueadvancing. If fewer than five MPC[WRITE-FIFO] commands were executed, then the MPC[READ-FIFO] commands to those FIFO locations will return undefined data. SeeWrite Training for more information on the FIFO pointer behavior.
- 6. For the CAS-2 command immediately following an MPC command, the CAS-2 operandsmust be driven LOW.
- 7. DMI[1:0] signals will be driven if WR-DBI, RD-DBI, or DM is enabled in the mode registers. See Write Training for more information on DMI behavior.
- 8. BL = 16, Read preamble: Toggle, Read postamble: 0.5nCK
- 9. DES commands are shown for ease of illustration; other commands may be valid atthese times.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. MPC[WRITE-FIFO] can be executed with a single bank or multiple banks active during refreshor during self refresh with CKE HIGH.
- 2. MPC[WRITE-FIFO] uses the same command-to-data/ODT timing relationship (RL, ^tDQSCK, ^tDQS2DQ, ODTLon, ODTLoff, ^tODTon, ^tODToff) as a WRITE-1 command.
- 3. For the CAS-2 command immediately following an MPC command, the CAS-2 operandsmust be driven LOW.
- 4. BL = 16, Write postamble = 0.5nCK.

XIN 🕱 CUN

5. DES commands are shown for ease of illustration; other commands may be valid atthese times.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Notes:

- 1. Any commands except MPC[WRITE-FIFO] and other exception commands defined othersection in this document (for example. MPC[READ DQ CALIBRATION]).
- 2. DES commands are shown for ease of illustration; other commands may be valid atthese times.

Table 4-119: MPC[WRITE-FIFO] AC Timing

Parameter	Symbol	MIN/MAX	Value	Unit
Additional time after ^t XP has expired until MPC[WRITE-FIFO] command may be issued	^t MPCWR	MIN	^t RCD + 3nCK	Ι

Internal Interval Timer

As voltage and temperature change on the device, the DQS clock-tree delay will shift, requiring retraining. The device includes an internal DQS clock-tree oscillator to measure the amount of delay over a given time interval (determined by the controller), allowing the controller to compare the trained delay value to the delay value seen at a latertime. The DQS oscillator will provide the controller with important information regarding the need to retrain and the magnitude of potential error.

The DQS interval oscillator is started by issuing an MPC command with OP[5:0] =101011b, which will start an internal ring oscillator that counts the number of time asignal propagates through a copy of the DQS clock tree.

The DQS oscillator may be stopped by issuing an MPC[STOP DQS OSCILLATOR] commandwith OP[6:0] set, as described in MPC Operation, or the controller may instruct SDRAM to count for a specific number of clocks anthen stop automatically (SeeMR23 for more information). If MR23 is set to automatically stop the DQS oscillator, then the MPC[STOP DQS OSCILLATOR] command should not be used (illegal). When the DQS oscillator is stopped by either method, the result of the oscillator counter is automaticallystored in MR18 and MR19.

The controller may adjust the accuracy of the result by running the DQS interval oscillatorfor shorter (less accurate) or longer (more accurate) duration. The accuracy of theresult for a given temperature and voltage is determined by the following equation, where run time = total time between START and STOP commands and DQS delay = thevalue of the DQS clock tree delay (tDQS2DQ MIN/MAX):

DQS oscillator granularity error = $\frac{2 \text{ x (DQS delay)}}{\text{run time}}$

8GB eMMC+ 8Gb LPDDR4 SDRAM

XIN 🕱 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Additional matching error must be included, which is the difference between DQStraining circuit and the actual DQS clock tree across voltage and temperature. Thematching error is vendor specific. Therefore, the total accuracy of the DQS oscillatorcounter is given by:

DQS oscillator accuracy = 1 - granularity error - matching error

For example, if the total time between START and STOP commands is 100ns, and themaximum DQS clock tree delay is 800ps (^tDQS2DQ MAX), then the DQS oscillator granularityerror is:

DQS oscillator granularity error =
$$\frac{2 \times (0.8 \text{ ns})}{100 \text{ ns}} = 1.6\%$$

This equates to a granularity timing error of 12.8ps. Assuming a circuit matching error 5.5ps across voltage and temperature, the accuracy is:

DQS oscillator accuracy = $1 - \frac{12.8 + 5.5}{800} = 97.7\%$

For example, running the DQS oscillator for a longer period improves the accuracy. If the total time between START and STOP commands is 500ns, and the maximum DQSclock tree delay is 800ps (tDQS2DQ MAX), then the DQS oscillator granularity error is:

DQS oscillator granularity error = $\frac{2 \times (0.8 \text{ns})}{500 \text{ns}} = 0.32\%$

This equates to a granularity timing error or 2.56ps. Assuming a circuit matching error 5.5ps across voltage and temperature, the accuracy is:

DQS oscillator accuracy = $1 - \frac{2.56 + 5.5}{800} = 99.0\%$

The result of the DQS interval oscillator is defined as the number of DQS clock tree delaysthat can be counted within the run time, determined by the controller. The result isstored in MR18-OP[7:0] and MR19-OP[7:0].

MR18 contains the least significant bits (LSB) of the result, and MR19 contains the mostsignificant bits (MSB) of the result. MR18 and MR19 are overwritten by the SDRAMwhen a MPC[STOP DQS OSCILLATOR] command is received.

The SDRAM counter will count to its maximum value (= 2^{16}) and stop. If the maximumvalue is read from the mode registers, the memory controller must assume that the counter overflowed the register and therefore discard the result. The longest runtime for the oscillator that will not overflow the counter registers can be calculated asfollows:

Longest runtime interval = 216 x ^tDQS2DQ(MIN) = 216 × 0.2ns = 13.1µs

DQS Interval Oscillator Matching Error

The interval oscillator matching error is defined as the difference between the DQStraining ckt (interval oscillator) and the actual DQS clock tree across voltage and temperature.

Parameters: ^tDQS2DQ: Actual DQS clock tree delay ^tDQS_{OSC}: Training ckt (interval oscillator) delay OSC_{Offse}t: Average delay difference over voltage and temperature (shown below) OSC_{Match}: DQS oscillator matching error

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-115: Interval Oscillator Offset – OSCoffset

Temperature(T)/Voltage(V)

OSC_{Match}:

 $OSC_{Match} = [^{t}DQS2DQ(V,T) - ^{t}DQS_{OSC}(V,T) - OSC_{offset}]$

tDQSosc:

 $^{t}DQS_{OSC}(V,T) = [\frac{Runtime}{2 \times Count}]$

Table 4-120: DQS Oscillator Matching Error Specification

Parameter	Symbol	MIN	MAX	Unit	Notes
DQS oscillator matching error	OSC _{Match}	-20	20	ps	1, 2, 3, 4, 5, 6, 7, 8
DQS oscillator offset	OSCoffset	-100	100	ps	2, 4. 7

Notes:

1. The OSC_{Match} is the matching error per between the actual DQS and DQS interval oscillatorover voltage and temperature.

2. This parameter will be characterized or guaranteed by design.

3. The $\ensuremath{\mathsf{OSC}}_{\ensuremath{\mathsf{Match}}}$ is defined as the following:

 $OSC_{Match} = [^{t}DQS2DQ_{(V, T)} - ^{t}DQS_{OSC(V, T)} - OSC_{offset}]$

Where ^tDQS2DQ_(V,T) and ^tDQS_{OSC(V,T)} are determined over the same voltage and temperatureconditions.

4. The runtime of the oscillator must be at least 200ns for determining ^tDQS_{OS}C(V,T).

$$^{t}DQS_{OSC}(V,T) = [\frac{Runtime}{2 \times Count}]$$

5. The input stimulus for ^tDQS2DQ will be consistent over voltage and temperature conditions.

6. The OSCoffset is the average difference of the endpoints across voltage and temperature.

7. These parameters are defined per channel.

8. $^{t}DQS2DQ(V,T)$ delay will be the average of DQS-to-DQ delay over the runtime period.

OSC Count Readout Time

OSC Stop to its counting value readout timing is shown in following figures.

XIN 🕱 CUN

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Note:

1. DQS interval timer run time setting:MR23 OP[7:0] = 0000000b.

Notes:

1. DQS interval timer run time setting: MR23 OP[7:0] ≠ 0000000b.

2. Setting counts of MR23.

Table 4-121: DQS Interval Oscillator AC Timing

Parameter	Symbol	MIN/MAX	Value	Unit
Delay time from OSC stop to mode registerreadout	tOSCO	MIN	MAX (40ns,8nCK)	ns

Note:

1. START DQS OSCILLATOR command is prohibited until ^tOSCO(MIN) is satisfied.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.34 Thermal Offset

Because of tight thermal coupling, hot spots on an SOC can induce thermal gradientsacross the device. Because these hot spots may not be located near the thermal sensor, the temperature compensated self refresh (TCSR) circuit may not generate enough refreshcycles to guarantee memory retention. To address this shortcoming, the controllercan provide a thermal offset that the memory can use to adjust its TCSR circuit to ensurereliable operation.

This thermal offset is provided through MR4 OP[6:5] to either or both channels (dualchannel devices). This temperature offset may modify refresh behaviour for the channelto which the offset is provided. It will take a maximum of 200µs to have the change reflected MR4 OP[2:0] for the channel to which the offset is provided. If the induced thermal gradient from the device temperature sensor location to the hot spot location of the controller is greater than 15°C, self refresh mode will not reliably maintain memorycontents.

To accurately determine the temperature gradient between the memory thermal sensorand the induced hot spot, the memory thermal sensor location must be provided to thecontroller.

4.35 Temperature Sensor

The device has a temperature sensor that can be read from MR4. This sensor can beused to determine the appropriate refresh rate, to determine whether AC timing de-ratingis required at an elevated temperature range, and to monitor the operating temperature. Either the temperature sensor or the device T_{OPER} can be used to determine if operatingtemperature requirements are being met.

The device monitors device temperature and updates MR4 according to ^tTSI. Upon exitingself refresh or power-down, the device temperature status bits shall be no older than^tTSI.

When using the temperature sensor, the actual device case temperature may be higher than the T_{OPER} specification that applies to standard or elevated temperature ranges. For example, T_{CASE} may be above 85°C when MR4[2:0] = b011. The device enables a 2°C temperature margin between the point when the device updates the MR4 value and thepoint when the controller reconfigures the system accordingly. When performing tightthermal coupling of the device to external hot spots, the maximum device temperaturemay be higher than indicated by MR4.

To ensure proper operation when using the temperature sensor, consider the following:

- TempGradient is the maximum temperature gradient experienced by the device at thetemperature of interest over a range of 2°C.
- ReadInterval is the time period between MR4 reads from the system.
- TempSensorInterval (^tTSI) is the maximum delay between the internal updates ofMR4.
- SysRespDelay is the maximum time between a read of MR4 and a response from thesystem.

In order to determine the required frequency of polling MR4, the system uses the Temp-Gradient and the maximum response time of the system in the following equation: $T_{\text{comp}}(r_{\text{comp}}) < 2^{\circ}C$

TempGradient × (ReadInterval + ${}^{t}TSI$ + SysRespDelay) ≤ 2°C

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-122:	Temperature	Sensor
--------------	-------------	--------

Parameter	Symbol	MIN/MAX	Value	Unit				
System temperature gradient	TempGradient	MAX	System Dependent	°C/s				
MR4 read interval	ReadInterval	MAX	System Dependent	ms				
Temperature sensor interval	^t TSI	MAX	32	ms				
System response delay	SysRespDelay	MAX	System Dependent	ms				
Device temperature margin	TempMargin	MAX	2	°C				

For example, if TempGradient is 10°C/s and the SysRespDelay is 1ms:

 $(10^{\circ}C/s) \times (ReadInterval + 32ms + 1ms) \le 2^{\circ}C$

In this case, ReadInterval shall be no greater than 167ms.

Figure 4-118: Temperature Sensor Timing

4.36ZQ Calibration

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

The MPC command is used to initiate ZQ calibration, which calibrates the output driverimpedance and CA/DQ ODT impedance across process, temperature, and voltage. ZQcalibration occurs in the background of device operation and is designed to eliminateany need for coordination between channels (that is, it allows for channel independence).ZQ calibration is required each time that the PU-Cal value (MR3-OP[0]) ischanged. Additional ZQ CALIBRATION commands may be required as the voltage andtemperature change in the system environment. CA ODT values (MR11-OP[6:4]) andDQ ODT values (MR11-OP[2:0]) may be changed without performing ZQ calibration, aslong as the PU-Cal value doesn' t change.

There are two ZQ calibration modes initiated with the MPC command: ZQCAL STARTand ZQCAL LATCH. ZQCAL START initiates the calibration procedure, and ZQCALLATCH captures the result and loads it into the drivers. A ZQCAL START command may be issued anytime the device is not in a power-downstate. A ZQCAL LATCH command may be issued anytime outside of power-down after^tZQCAL has expired and all DQ bus operations have completed. The CA bus must maintaina deselect state during ^tZQLAT to allow CA ODT calibration settings to be updated. The DQ calibration value will not be updated until ZQCAL LATCH is performed and^tZQLAT has been met. The following mode register fields that modify I/O parameterscannot be changed following a ZQCAL START command and before ^tZQCAL has expired:

- PU-Cal (pull-up calibration V_{OH} point)
- PDDS (pull-down drive strength and Rx termination)
- DQ ODT (DQ ODT value)
- CA ODT (CA ODT value)

ZQCAL Reset

The ZQCAL RESET command resets the output impedance calibration to a default accuracy $\pm 30\%$ across process, voltage, and temperature. This command is used to ensureoutput impedance accuracy to $\pm 30\%$ when ZQCAL START and ZQCAL LATCH commandsare not used.

The ZQCAL RESET command is executed by writing MR10-OP[0] = 1B.

Table 4-123: ZQ Calibration Parameters

Parameter	Symbol	MIN/MAX	Value	Unit
ZQCAL START to ZQCAL LATCH command interval	^t ZQCAL	MIN	1	μs
ZQCAL LATCH to next valid command interval	^t ZQLAT	MIN	MAX (30ns, 8nCK)	ns
ZQCAL RESET to next valid command interval	^t ZQRESET	MIN	MAX (50ns, 3nCK)	ns

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-119: ZQCAL Timing

Notes:

- 1. WRITE and PRECHARGE operations are shown for illustrative purposes. Any single ormultiple valid commands may be executed within the ^tZQCAL time and prior to latchingthe results.
- Before the ZQCAL LATCH command can be executed, any prior commands that utilize the DQ bus must have completed. WRITE commands with DQ termination must be givenenough time to turn off the DQ ODT before issuing the ZQCAL LATCH command. See the ODT section for ODT timing.

Multichannel Considerations

The device includes a single ZQ pin and associated ZQ calibration circuitry. Calibrationvalues from this circuit will be used by both channels according to the following protocol:

- The ZQCAL START command can be issued to either or both channels.
- The ZQCAL START command can be issued when either or both channels are executingother commands, andother commands can be issued during ^tZQCAL.
- The ZQCAL START command can be issued to both channels simultaneously.
- The ZQCAL START command will begin the calibration unless a previously requestedZQ calibration is inprogress.
- If the ZQCAL START command is received while a ZQ calibration is in progress, thecommand will be ignored and the in-progress calibration will not be interrupted.
- The ZQCAL LATCH command is required for each channel.
- The ZQCAL LATCH command can be issued to both channels simultaneously.
- The ZQCAL LATCH command will latch results of the most recent ZQCAL STARTcommand provided ^tZQCAL hasbeen met.
- ZQCAL LATCH commands that do not meet ^tZQCAL will latch the results of the mostrecently completed ZQcalibration.
- The ZQRESET MRW commands will only reset the calibration values for the channelissuing the command.

In compliance with complete channel independence, either channel may issue ZQCALSTART and ZQCAL LATCH commands as needed without regard to the state of the otherchannel.

8GB eMMC+ 8Gb LPDDR4 SDRAM

XIN 🕱 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O)) ZQ External Resistor, Tolerance, and Capacitive Loading

To use the ZQ CALIBRATION function, a 240 ohm, \pm 1% tolerance external resistor mustbe connected between the ZQ pin and V_{DDQ}.

If the system configuration shares the CA bus to form a x32 (or wider) channel, the ZQpin of each die's x16 channel must use a separate ZQCAL resistor.

If the system configuration has more than one rank, and if the ZQ pins of both ranks areattached to a single resistor, then the SDRAM controller must ensure that the ZQCAL'sdon't overlap.

The total capacitive loading on the ZQ pin must be limited to 25pF. For example, if a system configuration shares a CA bus between n channels to form an n x16 wide bus, and no means are available to control the ZQCAL separately for each channel (that is, separateCS, CKE, or CK), then each x16 channel must have a separate ZQCAL resistor. For ax32, two-rank system, each x16 channel must have its own ZQCAL resistor, but the ZQCAL resistor can be shared between ranks on each x16 channel. In this configuration, the CS signal can be used to ensure that the ZQCAL commands for Rank[0] and Rank[1]don't overlap.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.37 Frequency Set Points

Frequency set points enable the CA bus to be switched between two differing operating frequencies with changes in voltage swings and termination values, without ever beingin an untrained state, which could result in a loss of communication to the device. This is accomplished by duplicating all CA bus mode register parameters, as well as othermode register parameters commonly changed with operating frequency.

These duplicated registers form two sets that use the same mode register addresses, with read/write access controlled by MR bit FSP-WR (frequency set point write/read) and the operating point controlled by MR bit FSP-OP (FREQUENCY SET POINT operation). Changing the FSP-WR bit enables MR parameters to be changed for an alternatefrequency set-point without affecting the current operation.

Once all necessary parameters have been written to the alternate set point, changingthe FSP-OP bit will switch operation to use all of the new parameters simultaneously(within tFC), eliminating the possibility of a loss of communication that could becaused by a partial configuration change.

Parameters that have two physical registers controlled by FSP-WR and FSP-OP includethose in the following table.

Table 4-124: Mode Register Function with Two Physical Registers

MR Number	Operand	Function	Notes
	OP[1:0]	BL (Burst length)	
	OP[2]	WR-PRE (Write preamble length)	
MR1	OP[3]	RD-PRE (Read preamble type)	
	OP[6:4]	nWR (Write-recovery for AUTO PRECHARGE command)	
	OP[7]	RD-PST (Read postamble length)	
	OP[2:0]	RL (READ latency)	
MR2	OP[5:3]	WL (WRITE latency)	
	OP[6]	WLS (WRITE latency set)	
	OP[0]	PU-CAL (Pull-up calibration point)	1
	OP[1]	WR-PST (Write postamble length)	
MR3	OP[5:3]	PDDS (Pull-down drive strength)	
	OP[6]	DBI-RD (DBI-read enable)	
	OP[7]	DBI-WR (DBI-write enable)	
	OP[2:0]	DQ ODT (DQ bus receiver on-die termination)	
	OP[6:4]	CA ODT (CA bus receiver on-die termination)	
MD10	OP[5:0]	V _{REF(CA)} (V _{REF(CA)} setting)	
MIR 12	OP[6]	VR _{CA} (V _{REF(CA)} range)	
	OP[5:0]	V _{REF(DQ)} (V _{REF(DQ)} setting)	
INIK 14	OP[6]	VR _{DQ} (V _{REF(DQ)} range)	
	OP[2:0]	SOC ODT (Controller ODT value for V _{OH} calibration)	
MD22	OP[3]	ODTE-CK (CK ODT enabled for non-terminating rank)	
MR22 -	OP[4]	ODTE-CS (CS ODT enable for non-terminating rank)	
	OP[5]	ODTD-CA (CA ODT termination disable)	

Note:

1. For dual-channel devices, PU-CAL setting is required as the same value for both Ch.Aand Ch.B before issuing ZQCAL START command. See Mode Register Definition sectionfor more details.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

The table below shows how the two mode registers for each of the parameters in theprevious table can be modified by setting the appropriate FSP-WR value and how deviceoperation can be switched between operating points by setting the appropriate FSP-OPvalue. The FSP-WR and FSP-OP functions operate completely independently.

Function	MR# and Operand	Data	Operation	Notes
FSP-WR MR13 OP[6]	Q (default)	Data write to mode register N for FSP-OP[0] by MRW command.		
		Data read from mode register N for FSP-OP[0] by MRR command.		
		1	Data write to mode register N for FSP-OP[1] by MRW command.	
		1	Data read from mode register N for FSP-OP[1] by MRR command.	
		0 (default)	DRAM operates with mode register N for FSP-OP[0] setting.	2
FSP-OP MR13 OF		1	DRAM operates with mode register N for FSP-OP[1] setting.	2

Table 4-125: Relation Between MR Setting and DRAM Operation

Notes:

1. FSP-WR stands for frequency set point write/read.

2. FSP-OP stands for frequency set point operating point.

Frequency Set Point Update Timing

The frequency set point update timing is shown below. When changing the frequencyset point via MR13 OP[7], the V_{RCG} setting: MR13 OP[3] have to be changed into V_{REF}fast response (high current) mode at the same time. After frequency change time (^IFC) issatisfied. V_{RCG} can be changed into normal operation mode via MR13 OP[3].

Note:

1. For frequency change during frequency set point switching, refer to input Clock Stopand Frequency Change section.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-126: Frequency Set Point AC Timing

Boromotor	Symbol Min/		Data Rate		Unit	Notas
Parameter	Symbol	Мах	1600	3200	Unit	Notes
	^t FC_short	MIN	200		ns	
Frequency set point switching time	^t FC_middle	MIN	200		ns	1
	^t FC_long	MIN	250		ns	
Valid clock requirement after entering FSPchange	^t CKFSPE	MIN	MAX(7.5r	ns, 4nCK)	-	
Valid clock requirement before first valid commandafter FSP change	tCKFSPX	MIN	MAX(7.5r	ns, 4nCK)	-	

Note:

1. Frequency set point switching time depends on value of V_{REF(CA)} setting: MR12 OP[5:0]and V_{REF(CA)} range: MR12 OP[6] of FSP-OP 0 and 1. The details are shown in table below.Additionally change of frequency set point may affect V_{REF(DQ)} setting. Settling time ofV_{REF(DQ)} level is the same as V_{REF(CA)} level.

Table 4-127: ^tFC Value Mapping

Application	Step	Size	Range		
Application	From FSP-OP0	To FSP-OP1	From FSP-OP0	To FSP-OP1	
^t FC_short	Base	A single step size incre-ment/decrement	Base	No change	
^t FC_middle	Base	Two or more step size in-crement/decrement	Base	No change	
FC_long	_	_	Base	Change	

Note:

1. As well as change from FSP-OP1 to FSP-OP0.

Table 4-128: tFC Value Mapping: Example

Case	From/To	FSP-OP: MR13 OP[7]	V _{REF(CA)} Setting: MR12: OP[5:0]	V _{REF(CA)} Range: MR12 OP[6]	Application	Notes
1	From	0	001100	0	^I EC short	1
	То	1	001101	0	FC_Short	
0	From	0	001100	0		2
2	То	1	001110	0	FC_middle	2
2	From	0	Don't Care	0		2
3	То	1	Don't Care	1	FC_long	3

Notes:

1. A single step size increment/decrement for $V_{\text{REF(CA)}}$ setting value.

2. Two or more step size increment/decrement for VREF(CA) setting value.

3. V_{REF(CA)} range is changed. In this case, changing V_{REF(CA)} setting doesn't affect ^tFC value.

The LPDDR4 SDRAM defaults to FSP-OP[0] at power-up. Both set points default to settingsneeded to operate in un-terminated, low-frequency environments. To enable thedevice to operate at higher frequencies, Command bus training mode should be utilized to train the alternate frequency set point. See Command Bus Training section formore details on this training mode.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-121: Training for Two Frequency Set Points

Once both of the frequency set points have been trained, switching between points canbe performed with a single MRW followed by waiting for time ^tFC.

Figure 4-122: Example of Switching Between Two Trained Frequency Set Points

Switching to a third (or more) set point can be accomplished if the memory controllerhas stored the previously-trained values (in particular the V_{REF(CA)} calibration value)and rewrites these to the alternate set point before switching FSP-OP.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-123: Example of Switching to a Third Trained Frequency Set Point

4.38 Pull-Up and Pull-Down Characteristics and Calibration

Table /	1-129.	Pull-Down	Driver	Characteristics	- 70	Calibration
I able •	+-123.	Full-Down	Dirver	Characteristics	- 24	Calibration

Ronpd,nom	Register	Min	Nom	Мах	Unit
40 Ohm	R _{ON40PD}	0.90	1.0	1.10	R _{ZQ} /6
48 Ohm	R _{ON48PD}	0.90	1.0	1.10	R _{ZQ} /5
60 Ohm	Ron60PD	0.90	1.0	1.10	Rzq/4
80 Ohm	R _{ON80PD}	0.90	1.0	1.10	R _{ZQ} /3
120 Ohm	RON120PD	0.90	1.0	1.10	Rzq/2
240 Ohm	Ron240PD	0.90	1.0	1.10	R _{ZQ} /1

Note:

1. All value are after ZQ calibration. Without ZQ calibration, R_{ONPD} values are ±30%.

Table 4-130: Pull-Up Characteristics – ZQ Calibration

VOHPU, nom	V _{он} ,nom	Min	Nom	Мах	Unit
$V_{DDQ}/0.5$	300	0.90	1.0	1.10	V _{OH} ,nom
$V_{DDQ}/0.6$	360	0.90	1.0	1.10	V _{OH} ,nom

Notes:

1. All value are after ZQ calibration. Without ZQ calibration, RONPD values are ±30%.

2. V_{OH} , nom (mV) values are based on a nominal $V_{DDQ} = 0.6V$.

Table 4-131: Valid Calibration Points

M	ODT Value						
VOHPU	240	120	80	60	48	40	
VDDQ/0.5	Valid	Valid	Valid	Valid	Valid	Valid	
V _{DDQ} /0.6	DNU	Valid	DNU	Valid	DNU	DNU	

Notes:

1. Once the output is calibrated for a given V_{OH(nom)} calibration point, the ODT value maybe changed without recalibration.

2. If the V_{OH(nom)} calibration point is changed, then recalibration is required.

3. DNU = Do not use.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.39On-Die Termination for the Command/Address Bus

The on-die termination (ODT) feature allows the device to turn on/off termination resistancefor CK_t, CK_c, CS, and CA[5:0] signals without the ODT control pin. The ODTfeature is designed to improve signal integrity of the memory channel by allowing theDRAM controller to turn on and off termination resistance for any target DRAM devicesvia the mode register setting.

A simple functional representation of the DRAM ODT feature is shown below.

Figure 4-124: ODT for CA

ODT Mode Register and ODT State Table

ODT termination values are set and enabled via MR11. The CA bus (CK_t, CK_c, CS,CA[5:0]) ODT resistance values are set by MR11 OP[6:4]. The default state for the CA isODT disabled.

ODT is applied on the CA bus to the CK_t, CK_c, CS, and CA signals. Generally only onetermination load will be present even if multiple devices are sharing the command signals. In contrast to LPDDR4 where the ODT_CA input is used in combination withmode registers. Before enabling CA termination via MR11, all ranks should have appropriate MR22 terminationsettingsrogrammed. In a multi rank system, the terminating rank should betrained first, followed by the non-terminating rank(s).

CA ODT ODTD-CA ODTE-CK **ODTE-CS ODT State ODT State ODT State** for CS for CK MR11[6:4] MR22 OP[5] MR22 OP[3] MR22 OP[4] for CA Disabled¹ Valid² Valid² Valid² Off Off Off Valid² 0 0 0 On On On Valid² 0 0 1 Off On On Valid² 0 1 0 Off On On 1 Valid² 0 1 On Off Off Valid² 1 0 0 Off On On Valid² 0 1 1 Off On Off Valid² 1 0 1 Off Off On Valid² 1 1 Off Off Off 1

Table 4-132: Command Bus ODT State

Notes:

1. Default value.

2. Valid = 0 or 1.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

ODT Mode Register and ODT Characteristics

Table 4-133: ODT DC Electrical Characteristics for DQ Bus

RZQ = 240Ω ±1%	over entire	operating	range after	calibration

MR11 OP[6:4]	RTT	VOUT	Min	Nom	Max	Unit	Notes
001b	240Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	Rzq/1	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
		$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
010b	120Ω	$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /2	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
		$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
011b	80Ω	$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	Rzq/3	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
100b	60Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	Rzq/4	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
101b	48Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1	D==/5	1.0
		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	rzą/j	1, 2
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3	Rzq/6	1, 2
110b	40Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		
		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	Rzq/6	1, 2
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
Mismatch, CA -CA within clockgroup		0.5 × Vddq	-	-	2	%	1, 2, 3

Notes:

1. The tolerance limits are specified after calibration with stable temperature and voltage. To understand the behavior of the tolerance limits when voltage or temperature changes after calibration, see the section on voltage and temperature sensitivity.

Pull-down ODT resistors are recommended to be calibrated at 0.50 × V_{DDQ}. Other calibration points may be required to achieve the linearity specification shown above, for example, calibration at 0.75 × V_{DDQ} and 0.20 × V_{DDQ}.

3. CA to CA mismatch within clock group variation for a given component including CK_t, CK_c ,and CS (characterized).

CA-to-CA mismatch = $\frac{R_{ODT} (MAX) - R_{ODT} (MIN)}{R_{ODT} (AVG)}$

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

ODT for CA Update Time

XIN 🕱 CUN

4.40DQ On-Die Termination

On-die termination (ODT) is a feature that allows the device to turn on/off terminationresistance for each DQ, DQS, and DMI signal without the ODT control pin. The ODTfeature is designed to improve signal integrity of the memory channel by allowing theDRAM controller to turn on and off termination resistance for any target DRAM devicesduring WRITE or MASK WRITE operation.

The ODT feature is off and cannot be supported in power-down and self refresh modes.

The switch is enabled by the internal ODT control logic, which uses the WRITE-1 orMASK WRITE-1 command and other mode register control information. The value ofRTT is determined by the MR bits.

$$R_{TT} = \frac{V_{OUT}}{|I_{OUT}|}$$

Figure 4-126: Functional Representation of DQ ODT

Version1.1 5/2023

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-134: ODT DC Electrical Characteristics for DQ Bus $B_{70} = 2400 \pm 1\%$ over entire operating range after calibration

MR11 OP[6:4]	RTT	Vout	Min	Nom	Max	Unit	Notes
001b	240Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /1	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
		$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
010b	120Ω	$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	Rzq/2	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
	80Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
011b		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /3	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
	60Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
100b		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	Rzq/4	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
	48Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		1, 2
101b		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	Rzq/5	
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
110b	40Ω	$V_{OL(DC)} = 0.2 \times V_{DDQ}$	0.8	1.0	1.1		
		$V_{OM(DC)} = 0.50 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /6	1, 2
		$V_{OH(DC)} = 0.75 \times V_{DDQ}$	0.9	1.0	1.3		
Mismatch, CA -CA within clock group		0.50 × V _{DDQ}	_	_	2	%	1, 2, 3

Notes:

1. The ODT tolerance limits are specified after calibration with stable temperature andvoltage. To understand the behavior of the tolerance limits when voltage or temperaturechanges after calibration, see the following section on voltage and temperaturesensitivity.

2. Pull-down ODT resistors are recommended to be calibrated at $0.50 \times V_{DDQ}$. Other calibrationpoints may be used to achieve the linearity specification shown above, for example, calibration at $0.75 \times V_{DDQ}$ and $0.20 \times V_{DDQ}$.

3. DQ-to-DQ mismatch within byte variation for a given component, including DQS (characterized).

DQ-to-DQ mismatch= $\frac{R_{ODT} (MAX) - R_{ODT} (MIN)}{R_{ODT} (AVG)}$

8GB eMMC+ 8Gb LPDDR4 SDRAM

XIN 🕸 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Output Driver and Termination Register Temperature and Voltage Sensitivity

When temperature and/or voltage change after calibration, the tolerance limits are widenaccording to the tables below.

Resistor	Definition Point	Min	Мах	Unit	Notes			
RONPD	$0.50 \times V_{DDQ}$	90 - ($dR_{ONdT} \times \Delta T $) - ($dR_{ONdV} \times \Delta V $)	110 + $(dR_{ONdT} \times \Delta T) - (dR_{ONdV} \times \Delta V)$		1, 2			
VOHPU	$0.50 \times V_{DDQ}$	90 - ($dV_{OHdT} \times \Delta T $) - ($dV_{OHdV} \times \Delta V $)	110 + $(dV_{OHdT} \times \Delta T) - (dV_{OHdV} \times \Delta V)$	0/	1, 2			
Rtt(I/O)	$0.50 \times V_{DDQ}$	90 - ($dR^{ONdT} \times \Delta T $) - ($dR_{ONdV} \times \Delta V $)	110 + $(dR_{ONdT} \times \Delta T) - (dR_{ONdV} \times \Delta V)$	%	1, 2, 3			
RTT(IN)	0.50 × V _{DD2}	90 - (d $R_{ONdT} \times \Delta T $) - (d $R_{ONdV} \times \Delta V $)	110 + $(dR_{ONdT} \times \Delta T) - (dR_{ONdV} \times \Delta V)$		1, 2, 4			

Table 4-135: Output Driver and Termination Register Sensitivity Definition

Notes:

1. $\Delta T = T - T(@calibration), \Delta V = V - V(@calibration)$

2. dR_{ONdT}, dR_{ONdV}, dV_{OHdV}, dR_{TTdV}, and dR_{TTdT} are not subject to production testbut are verified by design and characterization.

3. This parameter applies to input/output pin such as DQS, DQ, and DMI.

4. This parameter applies to input pin such as CK, CA, and CS.

5. Refer to Pull-up/Pull-down Driver Characteristics for V_{OHPU}.

Table 4-136: Output Driver and Termination Register Temperature and Voltage Sensitivity

Symbol	Parameter	Min	Max	Unit
dRondt	Ron temperature sensitivity	0	0.75	%/°C
dRondv	Ron voltage sensitivity	0	0.20	%/mV
dVонат	V _{он} temperature sensitivity	0	0.75	%/°C
dV _{ОНdV}	V _{OH} voltage sensitivity	0	0.35	%/mV
dRttdt	R⊤⊤ temperature sensitivity	0	0.75	%/°C
dR⊤⊤d∨	R⊤⊤ voltage sensitivity	0	0.20	%/mV

ODT Mode Register

The ODT mode is enabled if MR11 OP[2:0] are non-zero. In this case, the value of R_{TT} is determined by the settings of those bits. The ODT mode is disabled if MR11 OP[2:0] = 0.

Asynchronous ODT

When ODT mode is enabled in MR11 OP[2:0], DRAM ODT is always High-Z. The DRAMODT feature is automatically turned ON asynchronously after a WRITE-1, MASKWRITE-1, or MPC[WRITE-FIFO] command. After the burst write is complete, the DRAMODT turns OFF asynchronously. The DQ bus ODT control is automatic and will turn theODT resistance on/off if DQ ODT is enabled in the mode register.

The following timing parameters apply when the DQ bus ODT is enabled:

• ODTLon, ^tODTon (MIN), ^tODTon (MAX)

• ODTLoff, ^tODToff (MIN), ^tODToff (MAX)

ODTL_{ON} is a synchronous parameter and is the latency from a CAS-2 command to the^tODTon reference. ODTL_{ON} latency is a fixed latency value for each speed bin. Eachspeed bin has a different ODTL_{ON} latency.

Minimum R_{TT} turn-on time (^tODTon (MIN)) is the point in time when the device terminationcircuit leaves High-Z and ODT resistance begins to turn on.

Maximum R_{TT} turn on time (^tODTon (MAX)) is the point in time when the ODT resistanceis fully on.

^tODTon (MIN) and ^tODTon (MAX) are measured once ODTL_{on} latency is satisfied fromCAS-2 command.

ODTL_{OFF} is a synchronous parameter and it is the latency from CAS-2 command to^tODToff reference. ODTL_{OFF} latency is a fixed latency value for each speed bin. Eachspeed bin has a different ODTL_{OFF} latency.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Minimum R_{TT} turn-off time (^tODToff (MIN)) is the point in time when the device terminationcircuit starts to turn off the ODT resistance.

Maximum ODT turn off time (^tODToff (MAX)) is the point in time when the on-die terminationhas reached High-Z.

^tODToff (MIN) and ^tODToff (MAX) are measured once ODTL_{off} latency is satisfied fromCAS-2 command.

Table 4-137: ODTLON and ODTLOFF Latency Values

ODTLon Latency ¹ tWPRE = 2 tCK WL Set A (nCK) WL Set B (nCK)		ODTLOFF	Latency ²	Lower	Upper Frequency Limit	
		WL Set A (nCK) WL Set B (nCK)		(>) (MHz)	(≤) (MHz)	
N/A	N/A	N/A	N/A	10	266	
N/A	N/A	N/A	N/A	266	533	
N/A	6	N/A	22	533	800	
4	12	20	28	800	1066	
4	14	22	32	1066	1333	
6	18	24s	36	1333	1600	
6	20	26	40	1600	1866	
8	24	28	44	1866	2133	

Notes:

1. ODTL_{ON} is referenced from CAS-2 command.

2. ODTL_{OFF} as shown in table assumes BL = 16. For BL32, 8 ^tCK should be added.
8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕮 CUN

Notes:

- 1. BL = 16, Write postamble = 0.5nCK, DQ/DQS: V_{SSQ} termination
- 2. Din n = data-in to column n.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.

DQ ODT During Power-Down and Self Refresh Modes

DQ bus ODT will be disabled in power-down mode. In self refresh mode, the ODT willbe turned off when CKE is LOW but will be enabled if CKE is HIGH and DQ ODT is enabled in the mode register.

ODT During Write Leveling Mode

If ODT is enabled in MR11 OP[2:0] in write leveling mode, the device always provides the termination on DQS signals. DQ termination is always off in write leveling mode.

Table 4-138: Termination State in Write Leveling Mode

ODT State in MR11 OP[2:0]	DQS Termination	DQ[15:0]/DMI[1:0] Termination		
Disabled	Off	Off		
Enabled	On	Off		

XIN 🕱 CUN

4.41 Target Row Refresh Mode

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

The device limits the number of times that a given row can be accessed within a refreshperiod (${}^{t}REFW \times 2$) prior to requiring adjacent rows to be refreshed. The maximum activatecount (MAC) is the maximum number of activates that a single row can sustain within a refresh period before the adjacent rows need to be refreshed. The row receiving the excessive actives is the target row (TRn), the adjacent rows to be refreshed are thevictim rows. When the MAC limit is reached on TRn, either the device receives all (R × 2)REFRESH commands before another row activate is issued, or the device should beplaced into targeted row refresh (TRR) mode. The TRR mode will refresh the rows adjacent to the TRn that encountered ^tMAC limit.

If the device supports unlimited MAC value: MR24 OP[2:0] = 000 and MR24 OP[3] = 1,TARGET ROW REFRESH operation is not required. Even though the device allows to setMR24 OP[7] = 1: TRR mode enable, in this case the device behavior is vendor specific.For example, a certain device may ignore MRW command for entering/exiting TRRmode or a certain device may support commands related TRR mode. See vendor devicedatasheets for details about TRR mode definition at supporting unlimited MAC valuecase.

There could be a maximum of two target rows to a victim row in a bank. The cumulativevalue of the activates from the two target rows on a victim row in a bank should not exceedMAC value.

MR24 fields are required to support the new TRR settings. Setting MR24 OP[7] = 1 enablesTRR mode and setting MR24 OP[7] = 0 disables TRR mode. MR24 OP[6:4] defines which bank (BAn) the target row is located in (refer to MR24 table for details).

The TRR mode must be disabled during initialization as well as any other device calibrationmodes. The TRR mode is entered from a DRAM idle state, once TRR mode hasbeen entered, no other mode register commands are allowed until TRR mode is completed; however, setting MR24 OP[7] = 0 to interrupt and reissue the TRR mode is allowed.

When enabled, TRR mode is self-clearing. the mode will be disabled automatically after the completion of defined TRR flow (after the third BAn precharge has completed plus^tMRD). Optionally, the TRR mode can also be exited via another MRS command at the completion of TRR by setting MR24 OP[7] = 0. If the TRR is exited via another MRS command, the value written to MR24 OP[6:4] are "Don't Care."

TRR Mode Operation

- The timing diagram depicts TRR mode. The following steps must be performed when TRR mode is enabled. Thismode requires all three ACT (ACT1, ACT2, and ACT3) and three corresponding PRE commands (PRE1, PRE2,and PRE3) to complete TRR mode. PRECHARGE All (PREA) commands issued while the device is in TRR modewill also perform precharge to BAn and counts towards PREn command.
- 2. Prior to issuing the MRW command to enter TRR mode, the device should be inthe idle state. MRW commandmust be issued with MR24 OP[7] = 1 and MR24OP[6:4] defining the bank in which the targeted row is located. Allother MR24 bitsshould remain unchanged.
- 3. No activity is to occur with the device until tMRD has been satisfied. When tMRDhas been satisfied, the onlycommands allowed BAn, until TRR mode has completed, are ACT and PRE.
- 4. The first ACT to the BAn with the TRn address can now be applied; no other commandis allowed at this point. Allother banks must remain inactive from when thefirst BAn ACT command is issued until [(1.5 x tRAS) + tRP] issatisfied.
- 5. After the first ACT to the BAn with the TRn address is issued, PRE to BAn is to beissued (1.5 × tRAS) later; andthen followed tRP later by the second ACT to the Banwith the TRn address.
- 6. After the second ACT to the BAn with the TRn address is issued, PRE to BAn is tobe issued tRAS later and thenfollowed tRP later by the third ACT to the BAn with the TRn address.
- 7. After the third ACT to the BAn with the TRn address is issued, PRE to BAn wouldbe issued tRAS later. TRRmode is completed once tRP plus tMRD is satisfied.
- 8. TRR mode must be completed as specified to guarantee that adjacent rows are refreshed. Anytime the TRRmode is interrupted and not completed, the interruptedTRR mode must be cleared and then subsequentlyperformed again. To clear an interrupted TRR mode, MR24 change is required with setting MR24 OP[7] = 0,MR24 OP[6:4] are "Don't care," followed by three PRE to BAn, with tRP time in between each PRE command. The complete TRR sequence (steps 2–7) must be thenre subsequent and completed to guarantee that the adjacent rows are refreshed.

8GB eMMC+ 8Gb LPDDR4 SDRAM

XIN 🕸 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

9. A REFRESH command to the device, or entering self refresh mode, is not allowedwhile the device is in TRRmode.

Figure 4-128: Target Row Refresh Mode

Notes:

- 1. TRn is the targeted row.
- 2. Bank BAn represents the bank in which the targeted row is located.
- 3. TRR mode self-clears after ^tMRD + ^tRP measured from the third BAn precharge PRE3 atclock edge Th4.
- 4. TRR mode or any other activity can be re-engaged after ^tRP + tMRD from the third Banprecharge PRE3.PRE_ALL also counts if it is issued instead of PREn. TRR mode is cleared by the device after PRE3 to the BAn bank.
- 5. ACTIVATE commands to BAn during TRR mode do not provide refresh support (the refreshcounter isunaffected).
- 6. The device must restore the degraded row(s) caused by excessive activation of the targetedrow (TRn) necessary to meetrefresh requirements.
- 7. A new TRR mode must wait ^tMRD + tRP time after the third precharge.
- 8. BAn may not be used with any other command.
- 9. ACT and PRE are the only allowed commands to BAn during TRR mode.
- 10. REFRESH commands are not allowed during TRR mode.
- 11. All timings are to be met by DRAM during TRR mode, such as ^tFAW. Issuing ACT1, ACT2, and ACT3 counts towards ^tFAW budget.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.42 Post-Package Repair

The device has fail row address repair as an optional post-package repair (PPR) featureand it is readable through MR25 OP[7:0].

PPR provides simple and easy repair method in the system and fail row address can berepaired by the electrical programming of Electrical-fuse scheme. The device can correctone row per bank with PPR.

Electrical-fuse cannot be switched back to un-fused states once it is programmed. The controller should prevent unintended PPR mode entry and repair.

Failed Row Address Repair

- 1. Before entering PPR mode, all banks must be precharged.
- 2. Enable PPR using MR4 OP[4] = 1 and wait ^tMRD.
- 3. Issue ACT command with fail row address.
- 4. Wait ^tPGM to allow the device repair target row address internally then issue PRECHARGE
- 5. Wait ^tPGM_EXIT after PRECHARGE, which allows the device to recognize repairedrow address RAn.
- 6. Exit PPR mode with setting MR4 OP[4] = 0.
- 7. The device is ready for any valid command after ^tPGMPST.
- 8. In more than one fail address repair case, repeat step 2 to 7.

Once PPR mode is exited, to confirm whether the target row has correctly repaired, thehost can verify the repair by writing data into the target row and reading it back afterPPR exit with MR4 OP[4] = 0 and ^tPGMPST.

The following timing diagram shows PPR operation.

Figure 4-129: Post-Package Repair Timing

Don't Care

Notes:

- 1. During ^tPGM, any other commands (including refresh) are not allowed on each die.
- 2. With one PPR command, only one row can be repaired at one time per die.
- 3. When PPR procedure completes, reset procedure is required before normal operation.
- 4. During PPR, memory contents are not refreshed and may be lost.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-139: Post-Package Rep	air Timing Parameters	
		_

Parameter	Symbol	Min	Мах	Units	
PPR programming time	^t PGM	1000	-	ms	
PPR exit time	^t PGM_EXIT	15	-	ns	
New address setting time	^t PGMPST	50	_	μs	

4.43 Read Preamble Training

Read preamble training is supported through the MPC function.

This mode can be used to train or read level the DQS receivers. After read preambletraining is enabled by MR13 OP[1] = 1, the device will drive DQS_t LOW and DQS_cHIGH within ^tSDO and remain at these levels until an MPC[READ DQ CALIBRATION]command is issued.

During read preamble training, the DQS preamble provided during normal operationwill not be driven by the device. After the MPC[READ DQ CALIBRATION] command isissued, the device will drive DQS_t/DQS_c and DQ like a normal READ burst after RLand ^tDQSCK. Prior to the MPC[READ DQ CALIBRATION] command, the device may ormay not drive DQ[15:0] in this mode.

While in read preamble training mode, only READ DQ CALIBRATION commands maybe issued.

- Issue an MPC[READ DQ CALIBRATION] command followed immediately by a CAS-2command.
- Each time an MPC[READ DQ CALIBRATION] command followed by a CAS-2 is received by the device, a 16-bitdata burst will, after the currently set RL, drive the eightbits programmed in MR32 followed by the eight bitsprogrammed in MR40 on all I/Opins.
- The data pattern will be inverted for I/O pins with a 1 programmed in the correspondinginvert mask mode registerbit.
- Note that the pattern is driven on the DMI pins, but no DATA BUS INVERSION functionis enabled, even if readDBI is enabled in the DRAM mode register.
- This command can be issued every ^tCCD seamlessly.
- The operands received with the CAS-2 command must be driven LOW.

Read preamble training is exited within ^tSDO after setting MR13 OP[1] = 0.

Note:

1. Read DQ calibration supports only BL16 operation.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.44 Electrical Specifications Absolute Maximum Ratings

Stresses greater than those listed in the table below may cause permanent damage tothe device. This is a stress rating only, and functional operation of the device at theseconditions, or any other conditions outside those indicated in the operational sections of this document, is not implied. Exposure to absolute maximum rating conditions forextended periods may adversely affect reliability.

Table 4-140: Absolute Maximum DC Ratings

Parameter	Symbol	Min	Max	Unit	Notes
V_{DD1} supply voltage relative to V_{SS}	V _{DD1}	-0.4	2.1	V	1
V_{DD2} supply voltage relative to V_{SS}	V _{DD2}	-0.4	1.5	V	1
V_{DDQ} supply voltage relative to V_{SS}	V _{DDQ}	-0.4	1.5	V	1
Voltage on any ball relative to V _{ss}	Vin, Vout	-0.4	1.5	V	
Storage temperature	Tstg	-55	125	°C	2

Notes:

1. For information about relationships between power supplies, see the Voltage Ramp and Device Initialization section.

2. Storage temperature is the case surface temperature on the center/top side of the device.For measurement conditions, referto the JESD51-2 standard.

4.45AC and DC Operating Conditions

Operation or timing that is not specified is illegal. To ensure proper operation, the devicemust be initialized properly.

Symbol	Min	Тур	Мах	DRAM	Unit	Notes			
V _{DD1}	1.7	1.8	1.95	Core 1 power	V	1, 2			
V _{DD2}	1.06	1.1	1.17	Core 2 power/Input buffer power	V	1, 2, 3			
Vddq	1.06	1.1	1.17	I/O buffer power	V	2, 3			

Table 4-141: Recommended DC Operating Conditions

Notes:

1. V_{DD1} uses significantly less power than V_{DD2} .

2. The voltage range is for DC voltage only. DC voltage is the voltage supplied at theDRAM and is inclusive of all noise up to20 MHz at the DRAM package ball.

3. The voltage noise tolerance from DC to 20 MHz exceeding a peak-to-peak tolerance of45mV at the DRAM ball is not included in the TdIVW.

Table 4-142: Input Leakage Current

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input leakage current	L	-4	4	μA	1, 2

Notes:

1. For CK_t, CK_c, CKE, CS, CA, ODT_CA, and RESET_n. Any input $0V \le V_{IN} \le V_{DD2}$. (All otherpins not under test = 0V.

2. CA ODT is disabled for CK_t, CK_c, CS, and CA.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Та	ble 4	<u> 1-143:</u>	Input/	Output	Leakage	Current	t

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/Output leakage current	IOZ	-5	5	μA	1, 2

Notes:

1. For DQ, DQS_t, DQS_c, and DMI. Any I/O $0V \le V_{OUT} \le V_{DDQ}$.

2. I/Os status are disabled: High Impedance and ODT off.

Table 4-144: Operating Temperature Range

Parameter/Condition	Symbol	Min	Max	Unit
Standard	Toper	Note 4	85	°C

Note:

1. Refer to operating temperature range on top page.

2. When using the device in the elevated temperature range, some derating may be required.

See Mode Registers for vendor-specific derating.

3. Either the device case temperature rating or the temperature sensor can be used to setan appropriate refresh rate, determine the need for AC timing derating, and/or monitorthe operating temperature (see Temperature Sensor). When using the temperature sensor, the actual device case temperature may be higher than the TOPER rating that applies for the standard or elevated temperature range. For example, TCASE could be above+85°C when the temperature sensor indicates a temperature of less than +85°C.

4. Refer to operating temperature range on top page.

4.46AC and DC Input Measurement Levels Input Levels for CKE

Table 4-145: Input Levels

Parameter	Symbol	Min	Мах	Unit	Notes
Input HIGH level (AC)	V _{IH(AC)}	0.75 × V _{DD2}	V _{DD2} + 0.2	V	1
Input LOW level (AC)	VIL(AC)	-0.2	0.25 × V _{DD2}	V	1
Input HIGH level (DC)	VIH(DC)	0.65 × V _{DD2}	V _{DD2} + 0.2	V	
Input LOW level (DC)	VIL(DC)	-0.2	0.35 × V _{DD2}	V	

Note:

1. See the AC Overshoot and Undershoot section.

Figure 4-131: Input Timing Definition for CKE

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Input Levels for RESET_n

Parameter	Symbol	Min	Мах	Unit	Notes			
Input HIGH level	Vih	0.80 × V _{DD2}	V _{DD2} + 0.2	V	1			
Input LOW level	VIL	-0.2	0.20 × V _{DD2}	V	1			

Note:

1. See the AC Overshoot and Undershoot section.

Figure 4-132: Input Timing Definition for RESET_n

Differential Input Voltage for CK

The minimum input voltage needs to satisfy both V_{indiff_CK} and $V_{indiff_CK/2}$ specificationat input receiver and their measurement period is 1^tCK. V_{indiff_CK} is the peak-to-peakvoltage centered on 0 volts differential and $V_{indiff_CK}/2$ is maximum and minimum peakvoltage from 0 volts.

Figure 4-133: CK Differential Input Voltage

Table4-147: CK Differential Input Voltage

Parameter	Symbol	1600/1867		2133/2400/3200		llmit	Note
	Symbol	Min	Max	Min	Max	Unit	Note
CK differential input voltage	Vindiff_CK	420	_	380	-	mV	1

Note:

1. The peak voltage of differential CK signals is calculated in a following equation.

V_{indiff_CK} = (Maximum peak voltage) - (Minimum peak voltage)

Maximum peak voltage = MAX(f(t))

Minimum peak voltage = MIN(f(t))

• f(t) = V_{CK_t} - V_{CK_c}

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Peak Voltage Calculation Method

The peak voltage of differential clock signals are calculated in a following equation.

- V_{IH.DIFF.peak} voltage = MAX(f(t))
- VIL.DIFF.peak voltage = MIN(f(t))
- $f(t) = V_{CK_t} V_{CK_c}$

Figure 4-134: Definition of Differential Clock Peak Voltage

Note:

1. VREF(CA) is device internal setting value by VREF training.

Single-Ended Input Voltage for Clock

The minimum input voltage need to satisfy Vinse_CK, Vinse_CK_HIGH, and Vinse_CK_LOWSpecification at input receiver.

Figure 4-135: Clock Single-Ended Input Voltage

Note:

1. $V_{\text{REF}(CA)}$ is device internal setting value by V_{REF} training.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-148: Clock Single-Ended Input Voltage

Parameter	Symbol	1600	/1867	2133/24	Unit	
	Symbol	Min	Мах	Min	Max	Unit
Clock single-ended input voltage	V _{inse_CK}	210	-	190	-	mV
Clock single-ended input voltage HIGH from V _{REF(CA)}	Vinse_CK_HIGH	105	-	95	-	mV
Clock single-ended input voltage LOW from V _{REF(CA)}	Vinse_CK_LOW	105	-	95	_	mV

Differential Input Slew Rate Definition for Clock

Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shownbelow in figure and the tables.

Figure 4-136: Differential Input Slew Rate Definition for CK_t, CK_c

Notes:

- 1. Differential signal rising edge from V_{ILdiff_CK} to V_{IHdiff_CK} must be monotonic slope.
- 2. Differential signal falling edge from $V_{\text{IHdiff}_\text{CK}}$ to $V_{\text{ILdiff}_\text{CK}}$ must be monotonic slope.

Table 4-149: Differential Input Slew Rate Definition for CK_t, CK_c

Description	From	То	Defined by
Differential input slew rate for rising edge (CK_t - CK_c)	VILdiff_CK	VIHdiff_CK	Vi∟diff_Cκ - ViHdiff_Cκ /ΔTRdiff
Differential input slew rate for falling edge (CK_t - CK_c)	VIHdiff_CK	VILdiff_CK	Vı∟diff_ск - Vıнdiff_ск /∆TFdiff

Table 4-150: Differential Input Level for CK_t, CK_c

Parameter	Symbol	1600	/1867	2133/24	llmit	
		Min	Max	Min	Мах	Unit
Differential Input HIGH	VIHdiff_CK	175	_	155	_	mV
Differential Input LOW	VILdiff_CK	_	-175	_	-155	mV

Table 4-151: Differential Input Slew Rate for CK_t, CK_c

Parameter	Symphol	1600/1867		2133/2400/3200		Unit
	Symbol	Min	Мах	Min	Max	Unit
Differential input slew rate for clock	SRIdiff_CK	2	14	2	14	V/ns

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Differential Input Cross-Point Voltage

The cross-point voltage of differential input signals (CK_t, CK_c) must meet the requirements nt table below. The differential input cross-point voltage VIX is measured from the actual cross-point of true and complement signals to the mid level that is V_{REF(CA)}.

Figure 4-137: V_{ix} Definition (Clock)

Note:

1. The base levels of V_{ix_CK_FR} and V_{ix_CK_RF} are V_{REF(CA)} that is device internal setting valueby V_{REF} training.

Table 4-152: Cross-Point Voltage for Differential Input Signals (Clock)

Parameter	Symbol	1600/1867		2133/2400/3200		Unit
	Symbol	Min	Max	Min	Max	Unit
Clock single-ended cross-point voltage ratio	Vix_CK_ratio	-	25	-	25	%

Notes:

1. $V_{ix_CK_ratio}$ is defined by this equation: $V_{ix_CK_ratio} = V_{ix_CK_FR} / |MIN(f(t))|$

2. Vix_CK_ratio is defined by this equation: Vix_CK_ratio = Vix_CK_RF/MAX(f(t))

Differential Input Voltage for DQS

The minimum input voltage needs to satisfy both V_{indiff_DQS} and V_{indiff_DQS}/2 specificationat input receiver and their measurement period is 1UI (^tCK/2). V_{indiff_DQS} is thepeak to peak voltage centered on 0 volts differential and V_{indiff_DQS}/2 is maximum andminimum peak voltage from 0 volts.

Figure 4-138: DQS Differential Input Voltage

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-153: DQS Differential Input Voltage

Parameter	Symbol	1600	/1867	2133/24	00/3200	Unit	Noto
	Symbol	Min	Мах	Min	Мах	Unit	Note
DQS differential input voltage	V_{indiff_DQS}	360	-	360	-	mV	1

Note:

1. The peak voltage of differential DQS signals is calculated in a following equation.

• V_{indiff_DQS} = (Maximum peak voltage) - (Minimum peak voltage)

• Maximum peak voltage = MAX(f(t))

Minimum peak voltage = MIN(f(t))

• $f(t) = V_{DQS_t} - V_{DQS_c}$

Peak Voltage Calculation Method

The peak voltage of differential DQS signals are calculated in a following equation.

• VIH.DIFF.peak voltage = MAX(f(t))

• VIL.DIFF.peak voltage = MIN(f(t))

• f(t) = V_{DQS_t} - V_{DQS_c}

Figure 4-139: Definition of Differential DQS Peak Voltage

Note:

1. VREF(DQ) is device internal setting value by VREF training.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Single-Ended Input Voltage for DQS

The minimum input voltage need to satisfy V_{inse_DQS} , $V_{inse_DQS_HIGH}$, and $V_{inse_DQS_LOW}$ specification at input receiver.

Figure 4-140: DQS Single-Ended Input Voltage

Note:

1. VREF(DQ) is device internal setting value by VREF training.

Table 4-154: DQS Single-Ended Input Voltage

Parameter	Symbol	1600	/1867	2133/2400/3200		Unit	
	Symbol	Min	Max	Min	Max	Unit	
DQS single-ended input voltage	V_{inse_DQS}	180	-	180	-	mV	
DQS single-ended input voltage HIGH from $V_{\text{REF}(DQ)}$	$V_{\text{inse}}_{\text{DQS}}_{\text{HIGH}}$	90	-	90	-	mV	
DQS single-ended input voltage LOW from $V_{\text{REF}(\text{DQ})}$	$V_{\text{inse}_DQS_LOW}$	90	_	90	_	mV	

Differential Input Slew Rate Definition for DQS

Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured asshown below in figure and the tables.

Figure 4-141: Differential Input Slew Rate Definition for DQS_t, DQS_c

Notes:

1. Differential signal rising edge from V_{ILdiff_DQS} to V_{IHdiff_DQS} must be monotonic slope.

2. Differential signal falling edge from V_{IHdiff_DQS} to V_{ILdiff_DQS} must be monotonic slope.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-155: Differential Input Slew Rate Definition for DQS_t, D0	⊋S_c	
--	------	--

Description	From	То	Defined by					
Differential input slew rate for rising edge (DQS_t - DQS_c)	VILdiff_DQS	VIHdiff_DQS	Vildiff_dqs - Vihdiff_dqs /∆TRdiff					
Differential input slew rate for falling edge (DQS_t - DQS_c)	V _{IHdiff_DQS}	V_{ILdiff_DQS}	V _{ILdiff_DQS} - V _{IHdiff_DQS} /ΔTFdiff					

Table 4-156: Differential Input Level for DQS_t, DQS_c

Parameter	Cumhal	1600/1867		2133/2400/3200		11
	Symbol	Min	Max	Min	Max	Unit
Differential Input HIGH	VIHdiff_DQS	140	_	140	_	mV
Differential Input LOW	VILdiff_DQS	-	-140	_	-140	mV

Table 4-157: Differential Input Slew Rate for DQS_t, DQS_c

Parameter	Symbol	1600/1867		2133/2400/3200		Unit	
	Symbol	Min	Max	Min	Max	Unit	
Differential input slew rate	SRIdiff	2	14	2	14	V/ns	

Differential Input Cross-Point Voltage

The cross-point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements ntable below. The differential input cross-point voltage V_{IX} is measured from the actual cross-point of true and complement signals to the mid level that is $V_{REF(DQ)}$.

Figure 4-142: Vix Definition (DQS)

Note:

1. The base levels of V_{ix_DQS_FR} and V_{ix_DQS_RF} are V_{REF(DQ)} that is device internal setting valueby V_{REF} training.

Table 4-158: Cross-Point Voltage for Differential Input Signals (DQS)

Notes 1 and 2 apply to entire table

Parameter	Symbol -	1600	/1867	2133/24	linit	
		Min	Max	Min	Max	Unit
Clock single-ended cross-point voltage ratio	Vix_DQS_ratio	-	20	-	20	%

Notes:

1. Vix_DQS_ratio is defined by this equation: Vix_DQS_ratio = Vix_DQS_FR/|MIN(f(t))|

2. $V_{ix_DQS_ratio}$ is defined by this equation: $V_{ix_DQS_ratio} = V_{ix_DQS_RF}/MAX(f(t))$

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Input Levels for ODT_CA

Parameter	Symbol	Min	Мах	Unit
ODT input HIGH level	Vihodt	0.75 × V _{DD2}	V _{DD2} + 0.2	V
ODT input LOW level	VILODT	-0.2	0.25 × V _{DD2}	V

Note:

1. See the Overshoot and Undershoot section.

4.47 Output Slew Rate and Overshoot/Undershoot specifications Single-Ended Output Slew Rate

Table 4-160: Single-Ended Output Slew Rate

Notes 1-5 applies to entire table

Parameter	Symbol	Va	lue	Units	
	Cymbol	Min	Max	Onits	
Single-ended output slew rate ($V_{OH} = V_{DDQX} 0.5$)	SRQse	3.0	9.0	V/ns	
Output slew rate matching ratio (rise to fall)	-	0.8	1.2	-	

Notes:

- 1. SR = Slew rate; Q = Query output; se = Single-ended signal
- 2. Measured with output reference load.
- 3. The ratio of pull-up to pull-down slew rate is specified for the same temperature andvoltage, over the entire temperature andvoltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due toprocessvariation.
- 4. The output slew rate for falling and rising edges is defined and measured between
 - $V_{OL(AC)} = 0.2 \times V_{OH(DC)}$ and $V_{OH(AC)} = 0.8 \times V_{OH(DC)}$.
- 5. Slew rates are measured under average SSO conditions with 50% of the DQ signals perdata byte switching.

Figure 4-143: Single-Ended Output Slew Rate Definition

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Differential Output Slew Rate

Table 4-161: Differential Output Slew Rate

Notes 1-4 applies to entire table

Parameter	Symbol	Va	lue	
Farameter	Symbol Min Max		Max	Units
Differential output slew rate ($V_{OH} = V_{DDQ} \ge 0.5$)	SRQdiff	6	18	V/ns

Notes:

- 1. SR = Slew rate; Q = Query output; se = Differential signal
- 2. Measured with output reference load.
- 3. The output slew rate for falling and rising edges is defined and measured between
- $V_{OL(AC)} = 0.2 \times V_{OH(DC)}$ and $V_{OH(AC)} = 0.8 \times V_{OH(DC)}$.
- 4. Slew rates are measured under average SSO conditions with 50% of the DQ signals perdata byte switching.

Figure 4-144: Differential Output Slew Rate Definition

Overshoot and Undershoot Specifications

Table 4-162: AC Overshoot/Undershoot Specifications

Parameter		1600	1866	3200	Unit
Maximum peak amplitude provided for overshootarea	MAX	0.3	0.3	0.3	V
Maximum peak amplitude provided for undershootarea	MAX	0.3	0.3	0.3	V
Maximum area above V _{DD} / V _{DDQ}	MAX	0.1	0.1	0.1	V-ns
Maximum area below Vss/ Vssq	MAX	0.1	0.1	0.1	V-ns

Notes:

1. VDD stands for VDD2 for CA[5:0], CK_t, CS_n, CKE, and ODT. VDD stands for VDDQ for DQ,DMI, DQS_t, and DQS_c.

2. V_{SS} stands for V_{SS} for CA[5:0], CK_t, CK_c, CS_n, CKE, and ODT. V_{SS} stands for V_{SSQ} forDQ, DMI, DQS_t, and DQS_c.

3. Maximum peak amplitude values are referenced from actual V_{DD} and V_{SS} values.

4. Maximum area values are referenced from maximum V_{DD} and V_{SS} values.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

(ozin x							
Table 4-163: Overshoot/Undershoot Specification for CKE and RESET							
Parameter	Specification						
Maximum peak amplitude provided for overshoot area	0.35V						
Maximum peak amplitude provided for undershoot area	0.35V						
Maximum area above V _{DD}	0.8 V-ns						
Maximum area below V _{SS}	0.8 V-ns						

Figure 4-145: Overshoot and Undershoot Definition

XIN 🕱 CUN

4.48 Driver Output Timing Reference Load

Timing reference loads are not intended as a precise representation of any particularsystem environment or depiction of an actual load presented by a production tester.System designers should use IBIS or other simulation tools to correlate the timing referenceload to a system environment. Manufacturers correlate to their production testconditions, generally one or more coaxial transmission lines terminated at the testerelectronics.

Figure 4-146: Driver Output Timing Reference Load

Note:

1. All output timing parameter values are reported with respect to this reference load; thisreference load is also used to report slew rate.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.49LVSTL I/O System

LVSTL I/O cells are comprised of a driver pull-up and pull-down and a terminator.

Figure 4-147: LVSTL I/O Cell

To ensure that the target impedance is achieved, calibrate the LVSTL I/O cell as followingexample:

- 1. Calibrate the pull-down device against a 240 ohm resistor to V_{DDQ} via the ZQ pin.
- · Set strength control to minimum setting
- Increase drive strength until comparator detects data bit is less than $V_{\text{DDQ}}/2$
- NMOS pull-down device is calibrated to 240 ohms

2. Calibrate the pull-up device against the calibrated pull-down device.

- Set VOH target and NMOS controller ODT replica via MRS (VOH can be automaticallycontrolled by ODT MRS)
- · Set strength control to minimum setting
- Increase drive strength until comparator detects data bit is greater than V_{OH} target
- NMOS pull-up device is calibrated to VOH target

Figure 4-148: Pull-Up Calibration

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.50 Input/Output Capacitance

Table 4-164 Input/Output Capacitance

Notes 1 and 2 apply to entire table

Parameter	Symbol	Min	Max	Unit	Notes
Input capacitance, CK_t and CK_c	Сск	0.5	0.9		
Input capacitance delta, CK_t and CK_c	Срск	0	0.09		3
Input capacitance, all other input-only pins	Cı	0.5	0.9		4
Input capacitance delta, all other input-only pins	C _{DI}	-0.1	0.1		5
Input/output capacitance, DQ, DMI, DQS_t, DQS_c	C _{IO}	0.7	1.3	рг	6
Input/output capacitance delta, DQS_t, DQS_c	C _{DDQS}	0	0.1		7
Input/output capacitance delta, DQ, DMI	C _{DIO}	-0.1	0.1		8
Input/output capacitance, ZQ pin	CzQ	0	5.0		

Notes:

1. This parameter applies to LPDDR4 die only (does not include package capacitance).

 This parameter is not subject to production testing; it is verified by design and characterization. The capacitance is measuredaccording to JEP147 (procedure for measuring inputcapacitance using a vector network analyzer), with V_{DD1}, V_{DD2},V_{DD0}, and V_{SS} applied;all other pins are left floating.

3. Absolute value of $C_{CK_t} - CC_{K_c}$.

4. C_{I} applies to CS, CKE, and CA[5:0].

- 5. $C_{DI} = C_I 0.5 \times (C_{CK_t} + C_{CK_c})$; it does not apply to CKE.
- 6. DMI loading matches DQ and DQS.
- 7. Absolute value of C_{DQS_t} and $C_{\text{DQS}_c}.$
- 8. $C_{DIO} = C_{IO} 0.5 \times (C_{DQS_t} + CDQS_c)$ in byte-lane.

4.51 IDD Specification Parameters and Test Conditions

Table 4-165: IDD Measurement Conditions

Switching for CA									
CK_t edge	R1	R2	R3	R4	R5	R6	R7	R8	
CKE	HIGH								
CS	LOW								
CA0	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH	
CA1	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH	
CA2	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH	
CA3	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH	
CA4	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH	
CA5	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH	

Notes:

1. LOW = $V_{IN} \le V_{IL(DC)}$ MAX

 $HIGH = V_{IN} \ge V_{IH(DC)} MIN$

STABLE = Inputs are stable at a HIGH or LOW level

2. CS must always be driven LOW.

3. 50% of CA bus is changing between HIGH and LOW once per clock for the CA bus.

4. The pattern is used continuously during IDD measurement for IDD values that requireswitching on the CA bus.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

able 4-166: CA Pattern for L _{DDR4R} for BL = 16									
Clock Cycle Number	СКЕ	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5
N	HIGH	HIGH	Read-1	L	н	L	L	L	L
N+1	HIGH	LOW		L	н	L	L	L	L
N+2	HIGH	HIGH	CAS-2	L	н	L	L	н	L
N+3	HIGH	LOW		L	L	L	L	L	L
N+4	HIGH	LOW	DES	L	L	L	L	L	L
N+5	HIGH	LOW	DES	L	L	L	L	L	L
N+6	HIGH	LOW	DES	L	L	L	L	L	L
N+7	HIGH	LOW	DES	L	L	L	L	L	L
N+8	HIGH	HIGH	Read-1	L	н	L	L	L	L
N+9	HIGH	LOW		L	н	L	L	н	L
N+10	HIGH	HIGH	CAS-2	L	н	L	L	н	н
N+11	HIGH	LOW		Н	н	Н	Н	н	н
N+12	HIGH	LOW	DES	L	L	L	L	L	L
N+13	HIGH	LOW	DES	L	L	L	L	L	L
N+14	HIGH	LOW	DES	L	L	L	L	L	L
N+15	HIGH	LOW	DES	L	L	L	L	L	L

Notes:

1. BA[2:0] = 010; CA[9:4] = 000000 OR 111111; Burst order CA[3:2] = 00 or 11 (same asLPDDR3 IDD4R specification).

2. CA pins are kept LOW with DES command to reduce ODT current (different from LPDDR3IDD4R specification).

Clock Cycle Number	CKE	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5
N	HIGH	HIGH	Muite 1	L	L	Н	L	L	L
N+1	HIGH	LOW	vvnte-1	L	Н	L	L	L	L
N+2	HIGH	HIGH	CAS 2	L	Н	L	L	н	L
N+3	HIGH	LOW	CAS-2	L	L	L	L	L	L
N+4	HIGH	LOW	DES	L	L	L	L	L	L
N+5	HIGH	LOW	DES	L	L	L	L	L	L
N+6	HIGH	LOW	DES	L	L	L	L	L	L
N+7	HIGH	LOW	DES	L	L	L	L	L	L
N+8	HIGH	HIGH	Mrite 1	L	L	Н	L	L	L
N+9	HIGH	LOW	white-1	L	Н	L	L	Н	L
N+10	HIGH	HIGH		L	Н	L	L	Н	Н
N+11	HIGH	LOW	CAS-2	L	L	Н	Н	Н	Н
N+12	HIGH	LOW	DES	L	L	L	L	L	L
N+13	HIGH	LOW	DES	L	L	L	L	L	L
N+14	HIGH	LOW	DES	L	L	L	L	L	L
N+15	HIGH	LOW	DES	L	L	L	L	L	L

Table 4-167: CA Pattern for I_{DD4W} for BL = 16

Notes:

1. BA[2:0] = 010; CA[9:4] = 000000 or 111111 (same as LPDDR3 IDD4wspecification).

2. No burst ordering (different from LPDDR3IDD4wspecification).

3. CA pins are kept LOW with DES CMD to reduce ODT current (different from LPDDR3IDD4wspecification).

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Table 4-168: Data	Pattern for	I _{DD4W} (DBI Of	i)for BL = 16

	DBI Off Case									
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	1	1	1	1	1	1	1	1	0	8
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	1	1	1	1	1	1	0	0	0	6
BL7	1	1	1	1	0	0	0	0	0	4
BL8	1	1	1	1	1	1	1	1	0	8
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	1	1	1	1	1	1	0	0	0	6
BL15	1	1	1	1	0	0	0	0	0	4
BL16	1	1	1	1	1	1	0	0	0	6
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	1	1	0	2
BL19	0	0	0	0	1	1	1	1	0	4
BL20	0	0	0	0	0	0	0	0	0	0
BL21	0	0	0	0	1	1	1	1	0	4
BL22	1	1	1	1	1	1	1	1	0	8
BL23	1	1	1	1	0	0	0	0	0	4
BL24	0	0	0	0	0	0	1	1	0	2
BL25	0	0	0	0	1	1	1	1	0	4
BL26	1	1	1	1	1	1	0	0	0	6
BL27	1	1	1	1	0	0	0	0	0	4
BL28	1	1	1	1	1	1	1	1	0	8
BL29	1	1	1	1	0	0	0	0	0	4
BL30	0	0	0	0	0	0	0	0	0	0
BL31	0	0	0	0	1	1	1	1	0	4
# of 1s	16	16	16	16	16	16	16	16		

Note:

1. Simplified pattern; same data pattern was applied to DQ[4], DQ[5], DQ[6], and DQ[7] toreduce complexity for I_{DD4W} pattern programming.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Table 4-169: Data	Pattern fo	r I _{DD4R} (DB	Off)for BL	= 16

					BI Off Cas	e				
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	1	1	1	1	1	1	1	1	0	8
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	1	1	1	1	1	1	0	0	0	6
BL7	1	1	1	1	0	0	0	0	0	4
BL8	1	1	1	1	1	1	1	1	0	8
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	1	1	1	1	1	1	0	0	0	6
BL15	1	1	1	1	0	0	0	0	0	4
BL16	1	1	1	1	1	1	1	1	0	8
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	0	0	0	0
BL19	0	0	0	0	1	1	1	1	0	4
BL20	1	1	1	1	1	1	0	0	0	6
BL21	1	1	1	1	0	0	0	0	0	4
BL22	0	0	0	0	0	0	1	1	0	2
BL23	0	0	0	0	1	1	1	1	0	4
BL24	0	0	0	0	0	0	0	0	0	0
BL25	0	0	0	0	1	1	1	1	0	4
BL26	1	1	1	1	1	1	1	1	0	8
BL27	1	1	1	1	0	0	0	0	0	4
BL28	0	0	0	0	0	0	1	1	0	2
BL29	0	0	0	0	1	1	1	1	0	4
BL30	1	1	1	1	1	1	0	0	0	6
BL31	1	1	1	1	0	0	0	0	0	4
# of 1s	16	16	16	16	16	16	16	16		

Note:

1. Simplified pattern; same data pattern was applied to DQ[4], DQ[5], DQ[6], and DQ[7] toreduce complexity for I_{DD4R} pattern programming.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

|--|

			-		BI On Cas	e		-		
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	0	0	0	0	0	0	0	0	1	1
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	0	0	0	0	0	0	1	1	1	3
BL7	1	1	1	1	0	0	0	0	0	4
BL8	0	0	0	0	0	0	0	0	1	1
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	0	0	0	0	0	0	1	1	1	3
BL15	1	1	1	1	0	0	0	0	0	4
BL16	0	0	0	0	0	0	1	1	1	3
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	1	1	0	2
BL19	0	0	0	0	1	1	1	1	0	4
BL20	0	0	0	0	0	0	0	0	0	0
BL21	0	0	0	0	1	1	1	1	0	4
BL22	0	0	0	0	0	0	0	0	1	1
BL23	1	1	1	1	0	0	0	0	0	4
BL24	0	0	0	0	0	0	1	1	0	2
BL25	0	0	0	0	1	1	1	1	0	4
BL26	0	0	0	0	0	0	1	1	1	3
BL27	1	1	1	1	0	0	0	0	0	4
BL28	0	0	0	0	0	0	0	0	1	1
BL29	1	1	1	1	0	0	0	0	0	4
BL30	0	0	0	0	0	0	0	0	0	0
BL31	0	0	0	0	1	1	1	1	0	4
# of 1s	8	8	8	8	8	8	16	16	8	

Note:

1. DBI enabled burst: BL0, BL6, BL8, BL14, BL16, BL22, BL26, and BL28.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-171: Data	Pattern for I _{DD4R}	(DBI On)for BL = 16

					BI On Cas	e	-			
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	0	0	0	0	0	0	0	0	1	1
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	0	0	0	0	0	0	1	1	1	3
BL7	1	1	1	1	0	0	0	0	0	4
BL8	0	0	0	0	0	0	0	0	1	1
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	0	0	0	0	0	0	1	1	1	3
BL15	1	1	1	1	0	0	0	0	0	4
BL16	0	0	0	0	0	0	0	0	1	1
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	0	0	0	0
BL19	0	0	0	0	1	1	1	1	0	4
BL20	0	0	0	0	0	0	1	1	1	3
BL21	1	1	1	1	0	0	0	0	0	4
BL22	0	0	0	0	0	0	1	1	0	2
BL23	0	0	0	0	1	1	1	1	0	4
BL24	0	0	0	0	0	0	0	0	0	0
BL25	0	0	0	0	1	1	1	1	0	4
BL26	0	0	0	0	0	0	0	0	1	1
BL27	1	1	1	1	0	0	0	0	0	4
BL28	0	0	0	0	0	0	1	1	0	2
BL29	0	0	0	0	1	1	1	1	0	4
BL30	0	0	0	0	0	0	1	1	1	3
BL31	1	1	1	1	0	0	0	0	0	4
# of 1s	8	8	8	8	8	8	16	16	8	

Note:

1. DBI enabled burst: BL0, BL6, BL8, BL14, BL20, BL26, and BL30.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-172: CA	Pattern fo	r L _{DDR4R} fo	or BL = 32	-		-	-		
Clock Cycle Number	СКЕ	cs	Command	CA0	CA1	CA2	CA3	CA4	CA5
Ν	HIGH	HIGH	Read-1	L	н	L	L	L	L
N+1	HIGH	LOW		L	н	L	L	L	L
N+2	HIGH	HIGH	CAS-2	L	н	L	L	н	L
N+3	HIGH	LOW		L	L	L	L	L	L
N+4	HIGH	LOW	DES	L	L	L	L	L	L
N+5	HIGH	LOW	DES	L	L	L	L	L	L
N+6	HIGH	LOW	DES	L	L	L	L	L	L
N+7	HIGH	LOW	DES	L	L	L	L	L	L
N+8	HIGH	LOW	DES	L	L	L	L	L	L
N+9	HIGH	LOW	DES	L	L	L	L	L	L
N+10	HIGH	LOW	DES	L	L	L	L	L	L
N+11	HIGH	LOW	DES	L	L	L	L	L	L
N+12	HIGH	LOW	DES	L	L	L	L	L	L
N+13	HIGH	LOW	DES	L	L	L	L	L	L
N+14	HIGH	LOW	DES	L	L	L	L	L	L
N+15	HIGH	LOW	DES	L	L	L	L	L	L
N+16	HIGH	HIGH	READ-1	L	н	L	L	L	L
N+17	HIGH	LOW		L	н	L	L	н	L
N+18	HIGH	HIGH	CAS-2	L	Н	L	L	Н	Н
N+19	HIGH	LOW		Н	Н	L	Н	н	Н
N+20	HIGH	LOW	DES	L	L	L	L	L	L
N+21	HIGH	LOW	DES	L	L	L	L	L	L
N+22	HIGH	LOW	DES	L	L	L	L	L	L
N+23	HIGH	LOW	DES	L	L	L	L	L	L
N+24	HIGH	LOW	DES	L	L	L	L	L	L
N+25	HIGH	LOW	DES	L	L	L	L	L	L
N+26	HIGH	LOW	DES	L	L	L	L	L	L
N+27	HIGH	LOW	DES	L	L	L	L	L	L
N+28	HIGH	LOW	DES	L	L	L	L	L	L
N+29	HIGH	LOW	DES	L	L	L	L	L	L
N+30	HIGH	LOW	DES	L	L	L	L	L	L
N+31	HIGH	LOW	DES	L	L	L	L	L	L

Notes:

1. BA[2:0] = 010, C[9:5] = 00000 or 11111, Burst order C[4:2] = 000 or 111.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-173: CA Pattern for I_{DD4W}BL = 32

Clock Cycle Number	СКЕ	CS	Command	CA0	CA1	CA2	CA3	CA4	CA5
N	HIGH	HIGH	WRITE-1	L	L	н	L	L	L
N+1	HIGH	LOW		L	Н	L	L	L	L
N+2	HIGH	HIGH	CAS-2	L	Н	L	L	н	L
N+3	HIGH	LOW		L	L	L	L	L	L
N+4	HIGH	LOW	DES	L	L	L	L	L	L
N+5	HIGH	LOW	DES	L	L	L	L	L	L
N+6	HIGH	LOW	DES	L	L	L	L	L	L
N+7	HIGH	LOW	DES	L	L	L	L	L	L
N+8	HIGH	LOW	DES	L	L	L	L	L	L
N+9	HIGH	LOW	DES	L	L	L	L	L	L
N+10	HIGH	LOW	DES	L	L	L	L	L	L
N+11	HIGH	LOW	DES	L	L	L	L	L	L
N+12	HIGH	LOW	DES	L	L	L	L	L	L
N+13	HIGH	LOW	DES	L	L	L	L	L	L
N+14	HIGH	LOW	DES	L	L	L	L	L	L
N+15	HIGH	LOW	DES	L	L	L	L	L	L
N+16	HIGH	HIGH	WRITE-1	L	L	Н	L	L	L
N+17	HIGH	LOW		L	Н	L	L	н	L
N+18	HIGH	HIGH	CAS-2	L	Н	L	L	н	Н
N+19	HIGH	LOW		L	L	L	Н	н	Н
N+20	HIGH	LOW	DES	L	L	L	L	L	L
N+21	HIGH	LOW	DES	L	L	L	L	L	L
N+22	HIGH	LOW	DES	L	L	L	L	L	L
N+23	HIGH	LOW	DES	L	L	L	L	L	L
N+24	HIGH	LOW	DES	L	L	L	L	L	L
N+25	HIGH	LOW	DES	L	L	L	L	L	L
N+26	HIGH	LOW	DES	L	L	L	L	L	L
N+27	HIGH	LOW	DES	L	L	L	L	L	L
N+28	HIGH	LOW	DES	L	L	L	L	L	L
N+29	HIGH	LOW	DES	L	L	L	L	L	L
N+30	HIGH	LOW	DES	L	L	L	L	L	L
N+31	HIGH	LOW	DES	L	L	L	L	L	L

Notes:

1. BA[2:0] = 010, C[9:5] = 00000 or 11111.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Table 4-174: Data Pattern for I_{DD4W} (DBI Off) BL = 32

			-		BI Off Cas	e				
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	1	1	1	1	1	1	1	1	0	8
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	1	1	1	1	1	1	0	0	0	6
BL7	1	1	1	1	0	0	0	0	0	4
BL8	1	1	1	1	1	1	1	1	0	8
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	1	1	1	1	1	1	0	0	0	6
BL15	1	1	1	1	0	0	0	0	0	4
BL16	1	1	1	1	1	1	0	0	0	6
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	1	1	0	2
BL19	0	0	0	0	1	1	1	1	0	4
BL20	0	0	0	0	0	0	0	0	0	0
BL21	0	0	0	0	1	1	1	1	0	4
BL22	1	1	1	1	1	1	1	1	0	8
BL23	1	1	1	1	0	0	0	0	0	4
BL24	0	0	0	0	0	0	1	1	0	2
BL25	0	0	0	0	1	1	1	1	0	4
BL26	1	1	1	1	1	1	0	0	0	6
BL27	1	1	1	1	0	0	0	0	0	4
BL28	1	1	1	1	1	1	1	1	0	8
BL29	1	1	1	1	0	0	0	0	0	4
BL30	0	0	0	0	0	0	0	0	0	0
BL31	0	0	0	0	1	1	1	1	0	4
BL32	1	1	1	1	1	1	1	1	0	8
BL33	1	1	1	1	0	0	0	0	0	4
BL34	0	0	0	0	0	0	0	0	0	0
BL35	0	0	0	0	1	1	1	1	0	4
BL36	0	0	0	0	0	0	1	1	0	2
BL37	0	0	0	0	1	1	1	1	0	4
BL38	1	1	1	1	1	1	0	0	0	6

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN	ХС ХС	CUN
-----	----------	-----

	Table 4-174: Data	Pattern for	I _{DD4W} (D	BI Off)	BL = 32	(Continued))
--	-------------------	-------------	----------------------	---------	---------	-------------	---

				[DBI Off Cas	е				
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL39	1	1	1	1	0	0	0	0	0	4
BL40	1	1	1	1	1	1	1	1	0	8
BL41	1	1	1	1	0	0	0	0	0	4
BL42	0	0	0	0	0	0	0	0	0	0
BL43	0	0	0	0	1	1	1	1	0	4
BL44	0	0	0	0	0	0	1	1	0	2
BL45	0	0	0	0	1	1	1	1	0	4
BL46	1	1	1	1	1	1	0	0	0	6
BL47	1	1	1	1	0	0	0	0	0	4
BL48	1	1	1	1	1	1	0	0	0	6
BL49	1	1	1	1	0	0	0	0	0	4
BL50	0	0	0	0	0	0	1	1	0	2
BL51	0	0	0	0	1	1	1	1	0	4
BL52	0	0	0	0	0	0	0	0	0	0
BL53	0	0	0	0	1	1	1	1	0	4
BL54	1	1	1	1	1	1	1	1	0	8
BL55	1	1	1	1	0	0	0	0	0	4
BL56	0	0	0	0	0	0	1	1	0	2
BL57	0	0	0	0	1	1	1	1	0	4
BL58	1	1	1	1	1	1	0	0	0	6
BL59	1	1	1	1	0	0	0	0	0	4
BL60	1	1	1	1	1	1	1	1	0	8
BL61	1	1	1	1	0	0	0	0	0	4
BL62	0	0	0	0	0	0	0	0	0	0
BL63	0	0	0	0	1	1	1	1	0	4
# of 1s	32	32	32	32	32	32	32	32		

Notes:

1. Simplified pattern; same data pattern was applied to DQ[4], DQ[5], DQ[6], and DQ[7] toreduce complexity for I_{DD4W} pattern programming.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Table 4-175: Data Pattern for I_{DD4R} (DBI Off) BL = 32

					BI Off Cas	e				
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	1	1	1	1	1	1	1	1	0	8
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	1	1	1	1	1	1	0	0	0	6
BL7	1	1	1	1	0	0	0	0	0	4
BL8	1	1	1	1	1	1	1	1	0	8
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	1	1	1	1	1	1	0	0	0	6
BL15	1	1	1	1	0	0	0	0	0	4
BL16	1	1	1	1	1	1	0	0	0	6
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	1	1	0	2
BL19	0	0	0	0	1	1	1	1	0	4
BL20	0	0	0	0	0	0	0	0	0	0
BL21	0	0	0	0	1	1	1	1	0	4
BL22	1	1	1	1	1	1	1	1	0	8
BL23	1	1	1	1	0	0	0	0	0	4
BL24	0	0	0	0	0	0	1	1	0	2
BL25	0	0	0	0	1	1	1	1	0	4
BL26	1	1	1	1	1	1	0	0	0	6
BL27	1	1	1	1	0	0	0	0	0	4
BL28	1	1	1	1	1	1	1	1	0	8
BL29	1	1	1	1	0	0	0	0	0	4
BL30	0	0	0	0	0	0	0	0	0	0
BL31	0	0	0	0	1	1	1	1	0	4
BL32	0	0	0	0	0	0	1	1	0	2
BL33	0	0	0	0	1	1	1	1	0	4
BL34	1	1	1	1	1	1	0	0	0	6
BL35	1	1	1	1	0	0	0	0	0	4
BL36	1	1	1	1	1	1	1	1	0	8
BL37	1	1	1	1	0	0	0	0	0	4
BL38	0	0	0	0	0	0	0	0	0	0

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

|--|

Table 4-175: Data Pattern for IDD4R (DBI Off) BL = 32 (Continued)										
DBI Off Case										
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL39	0	0	0	0	1	1	1	1	0	4
BL40	0	0	0	0	0	0	1	1	0	2
BL41	0	0	0	0	1	1	1	1	0	4
BL42	1	1	1	1	1	1	0	0	0	6
BL43	1	1	1	1	0	0	0	0	0	4
BL44	1	1	1	1	1	1	1	1	0	8
BL45	1	1	1	1	0	0	0	0	0	4
BL46	0	0	0	0	0	0	0	0	0	0
BL47	0	0	0	0	1	1	1	1	0	4
BL48	1	1	1	1	1	1	1	1	0	8
BL49	1	1	1	1	0	0	0	0	0	4
BL50	0	0	0	0	0	0	0	0	0	0
BL51	0	0	0	0	1	1	1	1	0	4
BL52	1	1	1	1	1	1	0	0	0	6
BL53	1	1	1	1	0	0	0	0	0	4
BL54	0	0	0	0	0	0	1	1	0	2
BL55	0	0	0	0	1	1	1	1	0	4
BL56	0	0	0	0	0	0	0	0	0	0
BL57	0	0	0	0	1	1	1	1	0	4
BL58	1	1	1	1	1	1	1	1	0	8
BL59	1	1	1	1	0	0	0	0	0	4
BL60	0	0	0	0	0	0	1	1	0	2
BL61	0	0	0	0	1	1	1	1	0	4
BL62	1	1	1	1	1	1	0	0	0	6
BL63	1	1	1	1	0	0	0	0	0	4
# of 1s	32	32	32	32	32	32	32	32		

Note:

1. Simplified pattern; same data pattern was applied to DQ[4], DQ[5], DQ[6], and DQ[7] toreduce complexity for I_{DD4R} pattern programming.

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-1	76: Data P	attern for	I _{DD4W} (DBI	On) BL =	32	, ,			X	
				[BI On Cas	e			1	
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	0	0	0	0	0	0	0	0	1	1
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	0	0	0	0	0	0	1	1	1	3
BL7	1	1	1	1	0	0	0	0	0	4
BL8	0	0	0	0	0	0	0	0	1	1
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	0	0	0	0	0	0	1	1	1	3
BL15	1	1	1	1	0	0	0	0	0	4
BL16	0	0	0	0	0	0	1	1	1	3
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	1	1	0	2
BL19	0	0	0	0	1	1	1	1	0	4
BL20	0	0	0	0	0	0	0	0	0	0
BL21	0	0	0	0	1	1	1	1	0	4
BL22	0	0	0	0	0	0	0	0	1	1
BL23	1	1	1	1	0	0	0	0	0	4
BL24	0	0	0	0	0	0	1	1	0	2
BL25	0	0	0	0	1	1	1	1	0	4
BL26	0	0	0	0	0	0	1	1	1	3
BL27	1	1	1	1	0	0	0	0	0	4
BL28	0	0	0	0	0	0	0	0	1	1
BL29	1	1	1	1	0	0	0	0	0	4
BL30	0	0	0	0	0	0	0	0	0	0
BL31	0	0	0	0	1	1	1	1	0	4
BL32	0	0	0	0	0	0	0	0	1	1
BL33	1	1	1	1	0	0	0	0	0	4
BL34	0	0	0	0	0	0	0	0	0	0
BL35	0	0	0	0	1	1	1	1	0	4
BL36	0	0	0	0	0	0	1	1	0	2
BL37	0	0	0	0	1	1	1	1	0	4
BL38	0	0	0	0	0	0	1	1	1	3

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN	XC	CUN
-----	----	-----

Гаble 4-176: Data Pattern for I _{DD4W} (DBI On) BL = 32 (Continued)										
DBI On Case										
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL39	1	1	1	1	0	0	0	0	0	4
BL40	0	0	0	0	0	0	0	0	1	1
BL41	1	1	1	1	0	0	0	0	0	4
BL42	0	0	0	0	0	0	0	0	0	0
BL43	0	0	0	0	1	1	1	1	0	4
BL44	0	0	0	0	0	0	1	1	0	2
BL45	0	0	0	0	1	1	1	1	0	4
BL46	0	0	0	0	0	0	1	1	1	3
BL47	1	1	1	1	0	0	0	0	0	4
BL48	0	0	0	0	0	0	1	1	1	3
BL49	1	1	1	1	0	0	0	0	0	4
BL50	0	0	0	0	0	0	1	1	0	2
BL51	0	0	0	0	1	1	1	1	0	4
BL52	0	0	0	0	0	0	0	0	0	0
BL53	0	0	0	0	1	1	1	1	0	4
BL54	0	0	0	0	0	0	0	0	1	1
BL55	1	1	1	1	0	0	0	0	0	4
BL56	0	0	0	0	0	0	1	1	0	2
BL57	0	0	0	0	1	1	1	1	0	4
BL58	0	0	0	0	0	0	1	1	1	3
BL59	1	1	1	1	0	0	0	0	0	4
BL60	0	0	0	0	0	0	0	0	1	1
BL61	1	1	1	1	0	0	0	0	0	4
BL62	0	0	0	0	0	0	0	0	0	0
BL63	0	0	0	0	1	1	1	1	0	4
# of 1s	16	16	16	16	16	16	32	32	16	

Note:

1. DBI enabled burst: BL0, BL6, BL8, BL14, BL16, BL22, BL26, BL28, BL32, BL38, BL40, BL46, BL48, BL54, BL58, and BL60.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-177: Data Pattern for I_{DD4R} (DBI On) BL = 32

	DBI On Case									
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]	DBI	# of 1s
BL0	0	0	0	0	0	0	0	0	1	1
BL1	1	1	1	1	0	0	0	0	0	4
BL2	0	0	0	0	0	0	0	0	0	0
BL3	0	0	0	0	1	1	1	1	0	4
BL4	0	0	0	0	0	0	1	1	0	2
BL5	0	0	0	0	1	1	1	1	0	4
BL6	0	0	0	0	0	0	1	1	1	3
BL7	1	1	1	1	0	0	0	0	0	4
BL8	0	0	0	0	0	0	0	0	1	1
BL9	1	1	1	1	0	0	0	0	0	4
BL10	0	0	0	0	0	0	0	0	0	0
BL11	0	0	0	0	1	1	1	1	0	4
BL12	0	0	0	0	0	0	1	1	0	2
BL13	0	0	0	0	1	1	1	1	0	4
BL14	0	0	0	0	0	0	1	1	1	3
BL15	1	1	1	1	0	0	0	0	0	4
BL16	0	0	0	0	0	0	1	1	1	3
BL17	1	1	1	1	0	0	0	0	0	4
BL18	0	0	0	0	0	0	1	1	0	2
BL19	0	0	0	0	1	1	1	1	0	4
BL20	0	0	0	0	0	0	0	0	0	0
BL21	0	0	0	0	1	1	1	1	0	4
BL22	0	0	0	0	0	0	0	0	1	1
BL23	1	1	1	1	0	0	0	0	0	4
BL24	0	0	0	0	0	0	1	1	0	2
BL25	0	0	0	0	1	1	1	1	0	4
BL26	0	0	0	0	0	0	1	1	1	3
BL27	1	1	1	1	0	0	0	0	0	4
BL28	0	0	0	0	0	0	0	0	1	1
BL29	1	1	1	1	0	0	0	0	0	4
BL30	0	0	0	0	0	0	0	0	0	0
BL31	0	0	0	0	1	1	1	1	0	4
BL32	0	0	0	0	0	0	1	1	0	2
BL33	0	0	0	0	1	1	1	1	0	4
BL34	0	0	0	0	0	0	1	1	1	3
BL35	1	1	1	1	0	0	0	0	0	4
BL36	0	0	0	0	0	0	0	0	1	1
BL37	1	1	1	1	0	0	0	0	0	4
BL38	0	0	0	0	0	0	0	0	0	0

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

DBI

0

0

of 1s

2 4

3

XIN	XC	CUN
-----	----	-----

Table 4-17	able 4-177: Data Pattern for I _{DD4R} (DBI On) BL = 32 (Continued)												
	DBI On Case												
	DQ[7]	DQ[6]	DQ[5]	DQ[4]	DQ[3]	DQ[2]	DQ[1]	DQ[0]					
BL39	0	0	0	0	1	1	1	1					
BL40	0	0	0	0	0	0	1	1					
BL41	0	0	0	0	1	1	1	1					
BL42	0	0	0	0	0	0	1	1					
BL43	1	1	1	1	0	0	0	0					
BL44	0	0	0	0	0	0	0	0					
BL45	1	1	1	1	0	0	0	0					
BL46	0	0	0	0	0	0	0	0					

BL43	1	1	1	1	0	0	0	0	0	4
BL44	0	0	0	0	0	0	0	0	1	1
BL45	1	1	1	1	0	0	0	0	0	4
BL46	0	0	0	0	0	0	0	0	0	0
BL47	0	0	0	0	1	1	1	1	0	4
BL48	0	0	0	0	0	0	0	0	1	1
BL49	1	1	1	1	0	0	0	0	0	4
BL50	0	0	0	0	0	0	0	0	1	1
BL51	0	0	0	0	1	1	1	1	0	4
BL52	0	0	0	0	0	0	1	1	1	3
BL53	1	1	1	1	0	0	0	0	0	4
BL54	0	0	0	0	0	0	1	1	0	2
BL55	0	0	0	0	1	1	1	1	0	4
BL56	0	0	0	0	0	0	0	0	0	0
BL57	1	1	1	1	0	0	0	0	0	4
BL58	0	0	0	0	0	0	0	0	1	1
BL59	1	1	1	1	0	0	0	0	0	4
BL60	0	0	0	0	0	0	1	1	0	2
BL61	0	0	0	0	1	1	1	1	0	4
BL62	0	0	0	0	0	0	1	1	1	3
BL63	1	1	1	1	0	0	0	0	0	4
# of 1s	16	16	16	16	16	16	32	32	16	

Note:

1. DBI enabled burst: BL0, BL6, BL8, BL14, BL16, BL22, BL26, BL28, BL34, BL36, BL42, BL44, BL48, BL52, BL58, and BL62.

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

IDD Specifications

 I_{DD} values are for the entire operating voltage range, and all of them are for the entirestandard temperature range.

Table 4-178: IDD Specification Parameters and Operating Conditions

LPDDR4: V_{DD2} , V_{DDQ} = 1.06–1.17V; V_{DD1} = 1.70–1.95V

Parameter/Condition	Symbol	Power Supply	Notes
Operating one bank active-precharge current: ^t CK = ^t CK	I _{DD01}	V _{DD1}	
(MIN); ^t RC = ^t RC (MIN); CKE is HIGH; CS is LOW between valid commands; CA bus	IDD02	V _{DD2}	
ODT is disabled		Vddq	2
Idle power-down standby current: ⁱ CK = ⁱ CK (MIN): CKE is	IDD2P1	V _{DD1}	
LOW; CS is LOW; All banks are idle; CA bus inputs are switching;	I _{DD2P2}	V _{DD2}	
Data bus inputs are stable; ODT is disabled	IDD2PQ	VDDQ	2
Idle power-down standby current with clock stop: CK t =	IDD2PS1	V _{DD1}	
LOW, CK_c = HIGH; CKE is LOW; CS is LOW; All banks are idle; CA	IDD2PS2	V _{DD2}	
bus inputs are stable; Data bus inputs are stable; ODT is disabled	IDD2PSQ	Vddq	2
Idle non-power-down standby current: ^t CK = ^t CK (MIN); CKE is	I _{DD2N1}	V _{DD1}	
HIGH; CS is LOW; All banks are idle; CA bus inputs are switching;	I _{DD2N2}	V _{DD2}	
Data bus inputs are stable; ODT is disabled	I _{DD2NQ}	V _{DDQ}	2
Idle non-power-down standby current with clock stopped:	IDD2NS1	V _{DD1}	
CK_t = LOW; CK_c = HIGH; CKE is HIGH; CS is LOW; All banks are lidle: CA bus inputs are stable: Data bus inputs are stable: ODT is	IDD2NS2	V _{DD2}	
disabled	I _{DD2NSQ}	V _{DDQ}	2
Active power-down standby current: ^t CK = ^t CK (MIN) [.] CKE is	IDD3P1	V _{DD1}	
LOW; CS is LOW; One bank is active; CA bus inputs are switching;	IDD3P2	V _{DD2}	
Data bus inputs are stable; ODT is disabled	I _{DD3PQ}	V _{DDQ}	2
Active power-down standby current with clock stop: CK t =	DD3PS1	V _{DD1}	
LOW, CK_c = HIGH; CKE is LOW; CS is LOW; One bank is active; CA	IDD3PS2	V _{DD2}	
bus inputs are stable; Data bus inputs are stable; ODT is disabled	IDD3PSQ	Vddq	3
Active non-power-down standby current: ^t CK = ^t CK (MIN):	IDD3N1	V _{DD1}	
CKE is HIGH; CS is LOW; One bank is active; CA bus inputs are	I _{DD3N2}	V _{DD2}	
switching; Data bus inputs are stable; ODT is disabled	Idd3nq	VDDQ	3
Active non-power-down standby current with clock stopped:	I _{DD3NS1}	V _{DD1}	
CK_t = LOW, CK_c = HIGH; CKE is HIGH; CS is LOW; One bank is active: CA bus inputs are stable: Data bus inputs are stable: ODT	I _{DD3NS2}	V _{DD2}	
is disabled	IDD3NSQ	VDDQ	3
Operating burst READ current: ^t CK = ^t CK (MIN); CS is LOW between	IDD4R1	V _{DD1}	
valid commands; One bank is active; BL = 16 or 32; RL = RL (MIN) : CA bus inputs are switching; 50% data change each burst	IDD4R2	V _{DD2}	
transfer; ODT is disabled	IDD4RQ	VDDQ	4

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 178: IDD Specification Parameters and Operating Conditions (Continued)

LPDDR4: V_{DD2}, V_{DDQ} = 1.06–1.17V; V_{DD1} = 1.70–1.95V

Parameter/Condition	Symbol	Power Supply	Notes
Operating burst WRITE current: $^{t}CK = {}^{t}CK (MIN)$ CS is I OW between	I _{DD4W1}	V _{DD1}	
valid commands; One bank is active; BL = 16 or 32; WL =WL (MIN); CA bus inputs	IDD4W2	V _{DD2}	
are switching; 50% data change eachburst transfer; ODT is disabled	Idd4wq	VDDQ	3
All-bank REFRESH burst current: ^t CK = ^t CK (MIN); CKE is HIGH	I _{DD51}	V _{DD1}	
between valid commands; 'RC = 'RFCab (MIN); Burst refresh; CA	I _{DD52}	V _{DD2}	
bus inputs are switching; Data bus inputs are stable; ODT is disabled	IDD5Q	Vddq	3
All-bank REFRESH average current: ^t CK = ^t CK (MIN): CKE is	IDD5AB1	V _{DD1}	
HIGH between valid commands; ^t RC = ^t REFI; CA bus inputs are	IDD5AB2	V _{DD2}	
switching; Data bus inputs are stable; ODT is disabled	IDD5ABQ	VDDQ	3
Per-bank REFRESH average current: ^t CK = ^t CK (MIN); CKE is	IDD5PB1	V _{DD1}	
HIGH between valid commands; ^t RC = ^t REFI/8; CA bus inputs are	IDD5PB2	V _{DD2}	
switching; Data bus inputs are stable; ODT is disabled	I _{DD5PBQ}	V _{DDQ}	3
Power-down self refresh current: CK t = LOW. CK c = HIGH:	I _{DD61}	V _{DD1}	5, 6
CKE is LOW; CA bus inputs are stable; Data bus inputs are stable;	IDD62	V _{DD2}	5, 6
Maximum 1x self refresh rate; ODT is disabled		VDDQ	3, 5, 6

Notes:

1. ODT disabled: MR11[2:0] = 000b.

2. I_{DD} current specifications are tested after the device is properly initialized.

3. Measured currents are the summation of V_{DDQ} and $V_{\text{DD2}}.$

4. Guaranteed by design with output load = 5pF and R_{ON} = 40 ohm.

5. The 1x self refresh rate is the rate at which the device is refreshed internally during selfrefresh before going into the elevatedtemperature range.

6. This is the general definition that applies to full-array self refresh.

7. For all I_{DD} measurements, $V_{IHCKE} = 0.8 \times V_{DD2}$; $V_{ILCKE} = 0.2 \times V_{DD2}$.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.52AC Timing

Table 4-179: Clock Timing

Parameter	Symbol	Min/	Data	Rate	Unit	
Parameter	Symbol	Max	1600	3200	Onit	
Average clock period	tCK(ova)	Min	1250	625	ps	
Average clock period	Cr(avg)	Max	100	100	ns	
		Min	0	46		
	CH(avg)	Max	0.	'CK(avg)		
Average LOW pulse width		Min	0.	46	tCK(ova)	
Average LOW pulse width	CL(avg)	Max	0.	54	Un(avy)	
Absolute clock period	^t CK(abs)	Min	^t CK(avg)min ·	+ ^t JIT(per)min	ps	
Abaclute cleak LICL pulse width		Min	0.	43	tCK(a)(g)	
Absolute clock high pulse width		Max	0.	Cit(avg)		
Abaaluta alaak LOW pulaa width	tCl (aba)	Min	0.	43	tCK(ova)	
	CL(abs)	Max	0.	57	Cr (avg)	
Clearly naminal littler	t UT(n e n) e ll e u e e	Min	-70	-40		
	STI (per)allowed	Max	70	40	ps	
Maximum clock jitter between two						
consecutive clock cycles (includes	^t JIT(cc)allowed	Max	140	80	ps	
clock period jitter)						

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-180: Read Output	ole 4-180: Read Output Timing									,
Parameter	Symbol	Min/			Data	Rate			Unit	Notoo
Farameter	Symbol	Мах	533	1066	1600	2133	2667	3200	Unit	Notes
DQS output access time	IDOSCK	Min			15	00			20	1
from CK_t/CK_c	DQSCK	Max			35	600			ps	I
DQS output access time from CK_t/CK_c - voltage variation	^t DQSCK_ VOLT	Max		7						2
DQS output access time from CK_t/CK_c - temperature variation	^t DQSCK_ TEMP	Max		4						3
CK to DQS rank to rank variation	^t DQSCK_r ank2rank	Max			1	.0			ns	4.5
DQS_t, DQS_c to DQ skew total, per group, per access (DBI Disabled)	^t DQSQ	Max			0.	18			UI	6
DQ output hold time total from DQS_t, DQS_c (DBI Disabled)	^t QH	Min		MIN('QSH, 'QSL)					ps	6
Data output valid window time total, per pin (DBI-Disabled)	^t QW_total	Min		0.75 0.73 0.70		UI	6, 11			
DQS_t, DQS_c to DQ skew total, per group, per access (DBI-Enabled)	^t DQSQ_D BI	Max		0.18					UI	6
DQ output hold time total from DQS_t, DQS_c (DBI-Enabled)	^t QH_DBI	Min		MIN(^t QSH_DI	BI, ^t QSL_	DBI)		ps	6
Data output valid window time total, per pin (DBI-Enabled)	^t QW_total_ DBI	Min		0.75		0.	73	0.70	UI	6, 11
DQS_t, DQS_c differential output LOW time (DBIDisabled)	^t QSL	Min			^t CL(abs	s) - 0.05			^t CK(avg)	9, 11
DQS_t, DQS_c differential output HIGH time (DBIDisabled)	^t QSH	Min			^t CH(abs	s) - 0.05			^t CK(avg)	10, 11
DQS_t, DQS_c differential output LOW time (DBIEnabled)	^t QSL-DBI	Min		^t CL(abs) - 0.045					^t CK(avg)	9, 11
DQS_t, DQS_c differential output HIGH time (DBIEnabled)	^t QSL-DBI	Min		^t CH(abs) - 0.045					^t CK(avg)	10, 11
Read preamble	^t RPRE	Min			1	.8			^t CK(avg)	
Read postamble	^t RPST	Min	0.4 (or 1	.4 if extra	a postam	ble is pro	gramme	d in MR)	^t CK(avg)	

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Deremeter	Cumhal	Min/				11	Notos			
Parameter	Symbol	Max	533	1066	1600	2133	2667	3200	Unit	Notes
DQS Low-Z from clock	^t LZ(DQS)	Min	(RL x ^t CK) + ^t DQSCK(Min) - (^t RPRE(Max) x ^t CK) - 200ps						ps	
DQ Low-Z from clock	^t LZ(DQ)	Min		(RL x ^t CK) + tDQSCK(Min) - 200ps						
QS High-Z from clock	^t HZ(DQS)	Min	(RL	(RL x tCK) + tDQSCK(Max)+(BL/2 x tCK) + (tRPST(Max) x tCK) - 100ps						
DQ High-Z from clock	^t HZ(DQ)	Min	(RL x ^t C	(RL x ^t CK) + ^t DQSCK(Max) + ^t DQSQ(Max) + (BL/2 x ^t CK) - 100ps						

Notes:

1. This parameter includes DRAM process, voltage, and temperature variation. It also includes the AC noise impact forfrequencies >20 MHz and a MAX voltage of 45mV peakto-peak from DC-20 MHz at a fixed temperature on the package. The voltage supplynoise must comply with the component MIN/MAX DC operating conditions.

2. ^tDQSCK_volt max delay variation as a function of DC voltage variation for V_{DDQ} andV_{DD2}. The voltage supply noise must comply with the component MIN/MAX DC operatingconditions. The voltage variation is defined as theMAX[ABS(^tDQSCK(MIN)@V1 - ^tDQSCK(MAX)@V2), ABS(^tDQSCK(MAX)@V1 - ^tDQSCK(MIN)@V2)]/ABS(V1 - V2).

3. ^tDQSCK_temp MAX delay variation as a function of temperature.

4. The same voltage and temperature are applied to ${}^t\!\text{DQSCK}_rank2rank.$

5. ^tDQSCK_rank2rank parameter is applied to multi-ranks per byte lane within a packageconsisting of the same design dies.

6. DQ-to-DQS differential jitter where the total includes the sum of deterministic and randomtiming terms for a specified BER.

7. The deterministic component of the total timing.

8. This parameter will be characterized and guaranteed by design.

9. ^tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from one falling edgeto the next consecutive rising edge.

- 10. ^tQSH describes the instantaneous differential output high pulse width on DQS_t -DQS_c, as measured from one fallingedge to the next consecutive rising edge.
- 11. This parameter is a function of input clock jitter. These values assume MIN ^tCH(abs) and ^tCL(abs). When the input clockjitter MIN ^tCH(abs) and ^tCL(abs) is 0.44 or greater than ^tCK(avg), the MIN value of ^tQSL will be ^tCL(abs) 0.04 and ^tQSHwill be ^tCH(abs) 0.04.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-181: Write Voltage and Timing Note $III = {}^{t}CK(AVG)(MIN)/2$

		Min/			Data	Rate				
Parameter	Symbol	Мах	533	1066	1600	2133	2667	3200	Unit	Notes
Rx timing window total at V _{dIVW} voltage levels	TdIVW _total	Max		0.22 0.25						1, 2, 3
DQ and DMI input pulse width (at V _{CENT_DQ})	TdIPW	Min		0.45						7
DO to DOS offect		Min			20	00			ne	6
	DQ32DQ	Max			8	00			ps	0
DQ-to-DQ offset	^t DQDQ	Max			3	0			ps	7
DQ-to-DQS offset temperature variation	^t DQS2DQ _temp	Max		0.6						8
DQ-to-DQS offset voltage variation	^t DQS2DQ _volt	Max		33						9
DQ-to-DQS offset rank to rank variation	^t DQS2DQ _rank2rank	Max		200						10, 11
WRITE command to first	tDOSS	Min	Min 0.75						^t CK(ava)	
DQS transition	DQUU	Max			1.	25			On(avg)	
DQS input HIGH-level width	^t DQSH	-			0	.4			^t CK(avg)	
DQS input LOW-level width	^t DQSL	Min			0	.4			^t CK(avg)	
DQS falling edge to CK setup time	^t DSS	Min		0.2						
DQS falling edge from CK hold time	^t DSH	Min		0.2					^t CK(avg)	
Write postamble	tWPST	Min	0.4 (or 1.4 if extra postamble is programmed in MR)						^t CK(avg)	
Write preamble	^t WPRE	Min			1	.8			^t CK(avg)	

Notes:

1. Data Rx mask voltage and timing parameters are applied per pin and include the DRAMDQ-to-DQS voltage AC noise impact for frequencies >20 MHz with a maximum voltageof 45mV peak-to-peak at a fixed temperature on the package. Thevoltage supply noisemust comply to the component MIN/MAX DC operating conditions.

2. Rx differential DQ-to-DQS jitter total timing window at the VdIVW voltage levels.

3. Defined over the DQ internal V_{REF} range. The Rx mask at the pin must be within the internalV_{REF} DQ range irrespective of the input signal common mode.

- 4. Rx mask defined for one pin toggling with other DQ signals in a steady state.
- 5. DQ-only minimum input pulse width defined at the $V_{\text{CENT}_DQ(\text{pin}_mid)}$.

6. DQ-to-DQS offset is within byte from DRAM pin to DRAM internal latch. Includes allDRAM process, voltage, and temperature variations.

7. DQ-to-DQ offset defined within byte from DRAM pin to DRAM internal latch for a givencomponent.

8. ^tDQS2DQ (MAX) delay variation as a function of temperature.

9. ^tDQS2DQ (MAX) delay variation as a function of the DC voltage variation for V_{DDQ} andV_{DD2}. It includes the V_{DDQ} andV_{DD2} AC noise impact for frequencies >20 MHz and MAXvoltage of 45mV peak-to-peak from DC-20 MHz at a fixed temperature onhe package.For tester measurement, V_{DDQ} = V_{DD2} is assumed.

10. The same voltage and temperature are applied to ^tDQS2DQ_rank2rank.

11. ^tDQS2DQ_rank2rank parameter is applied to multi-ranks per byte lane within a packageconsisting of the same design die.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-182: CKE Input Timing

Poromotor	Symbol	Min/	Data	Rate	Unit	Notoo
Farameter	Symbol	Мах	1600	3200		Notes
CKE minimum pulse width (HIGH and LOW pulse width)	^t CKE	Min	MAX(7.5ns, 4nCK)		ns	1
Delay from valid command to CKE input LOW	^t CMDCKE	Min	MAX(1.75ns, 3nCK)		ns	1
Valid clock requirement after CKE input LOW	^t CKELCK	Min	MAX(5ns	s, 5nCK)	ns	1
Valid CS requirement before CKE input LOW	^t CSCKE	Min	1.75		ns	
Valid CS requirement after CKE input LOW	^t CKELCS	Min	MAX(5ns, 5nCK)		ns	1
Valid Clock requirement before CKE Input HIGH	^t CKCKEH	Min	MAX(1.75	ns, 3nCK)	ns	1
Exit power-down to next valid command delay	^t XP	Min	MAX(7.5r	is, 5nCK)	ns	1
Valid CS requirement before CKE input HIGH	^t CSCKEH	Min	1.7	75	ns	
Valid CS requirement after CKE input HIGH	^t CKEHCS	Min	MAX(7.5r	is, 5nCK)	ns	1
Valid clock and CS requirement after CKE input LOW after MRW command	^t MRWCKEL	Min	MAX(14ns, 10nCK)		ns	1
Valid clock and CS requirement after CKE input LOW after ZQ calibration start command	^t ZQCKE	Min	MAX(1.75	ns, 3nCK)	ns	1

Note:

1. Delay time has to satisfy both analog time(ns) and clock count(nCK). For example,^tCMDCKE will not expire until CK hastoggled through at least 3 full cycles (3^tCK) and3.75ns has transpired. The case which 3nCK is applied to is shown below.

Figure 4-149: ^tCMDCKE Timing

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Tab	le 4-183:	Command	Address	Input	Timing

Deremeter	Sumbol	Min/			Unit	Notoo				
Parameter	Symbol	Мах	533	1066	1600	2133	2667	3200	Unit	Notes
Command/address valid window (referenced from CA V _{IL} /V _{IH} to CK V _{IX})	^t cIVW	Min			0.	.3			^t CK(avg)	1, 2, 3
Address and control input pulse width (referenced to V _{REF})	^t cIPW	Min	0.55	0.55	0.55	0.6	0.6	0.6	^t CK(avg)	4

Notes:

1. CA Rx mask timing parameters at the pin including voltage and temperature drift.

2. Rx differential CA to CK jitter total timing window at the V_{cIVW} voltage levels.

3. Defined over the CA internal V_{REF} range. The Rx mask at the pin must be within the internalV_{REF(CA)} range irrespectiveof the input signal common mode.

4. CA only minimum input pulse width defined at the V_{CENT_CA} (pin mid).

Table 4-184: Boot Timing Parameters (10-55 MHz)

Parameter	Symbol	Min/ Max	Value	Unit	
Clock avela time	tCKb	Min	18	20	
	CKD	Max	100	ns	
DQS output data acess time from	^t DQSCKb	Min	1.0	20	
СК		Max	10.0	ns	
DQS edge to output data edge	^t DQSQb	Max	1.2	ns	

Table 4-185: Mode Register Timing Parameters

Paramatar	Symbol	Min/	Data	Rate	Unit
Parameter	Symbol	Max	1600	3200	Unit
MODE REGISTER WRITE (MRW) command period	^t MRW	Min	MAX(10ns, 10nCK)		ns
MODE REGISTER SET command delay	^t MRD	Min	MAX(14ns, 10nCK)		ns
MODE REGISTER READ (MRR) command period	^t MRR	Min	٤	3	^t CK(AVG)
Additional time after ^t XP has expired until the MRR command may be issued	^t MRRI	Min	^t RCD(mir	i) + 3nCK	ns
Delay from MRW command to DQS driven out	^t SDO	Max	MAX(12n	CK, 20ns)	ns

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-186: Core Timing Parameters

Refresh rate is determined by the value in MR4 OP[2:0]

Parameter	Symbol	Min/			Unit	Notes				
Parameter	Symbol	Мах	533	1066	1600	2133	2667	3200	Unit	Notes
READ latency (DBI disa-bled)	RL-A	Min	6	10	14	20	24	28	^t CK(AVG)	
READ latency (DBI ena-bled)	RL-B	Min	6	12	16	22	28	32	^t CK(AVG)	
WRITE latency (Set A)	WL-A	Min	4	6	8	10	12	14	^t CK(AVG)	
WRITE latency (Set B)	WL-B	Min	4	8	12	18	22	26	^t CK(AVG)	
ACTIVATE-to-ACTIVATE command period (same bank)	^t RC	Min		^t RAS + ^t RPab (with all-bank precharge) ^t RAS + ^t RPpb (with per-bank precharge)						
Minimum self refresh time (entry to exit)	^t SR	Min			ns					
Self refresh exit to next valid command delay	^t XSR	Min		MAX	ns					
CAS-to-CAS delay	^t CCD	Min		8						
CAS-to-CAS delay masked write	^t CCDMW	Min		32						
Internal READ-to-PRECHARGE command delay	^t RTP	Min		MAX(7.5ns, 8nCK)						
RAS-to-CAS delay	^t RCD	Min			MAX(18r	ns, 4nCK)			ns	
Row precharge time (single bank)	^t RPpb	Min			MAX(18r	ns, 3nCK))		ns	
Row precharge time (all banks)	^t RPab	Min			MAX(21r	ns, 3nCK))		ns	
Dow active time	TDAS	Min			MAX(42r	ns, 3nCK)			ns	1
	RAS	Max		MIN(9 × ^t	REFI × R	efresh Ra	ate1, 70.2)	μs	
Write recovery time	^t WR	Min			MAX(18r	ns, 4nCK)	1		ns	
Write-to-read delay	^t WTR	Min			MAX(10r	ns, 8nCK)			ns	
Active bank A to active bank B	^t RRD	Min		MAX(10ns, 4nCK)						
Precharge-to-precharge delay	^t PPD	Min	4						^t CK(AVG)	2
Four-bank activate window	^t FAW	Min		40						
Delay from SRE command to CKE input LOW	^t ESCKE	Min		I	MAX(1.75	ins, 3nCk	()		_	3

Notes:

1. DRAM devices should be evenly addressed when being accessed. Disproportionate accessesto a particular row addressmay result in reduction of the product lifetime.

2. Precharge to precharge timing restriction does not apply to AUTO PRECHARGE commands.

3. Delay time has to satisfy both analog time(ns) and clock count (nCK). It means that ESCKE will not expire until CK hastoggled through at least three full cycles (3 ^tCK) and 1.75ns has transpired. The case which 3nCK is applied to is shownbelow.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-187: CA Bus ODT Timing

Peremeter	Symbol Min/		Data Rate
Falameter	Symbol	Max	533-3200
CA ODT value update time	tODTUP	Min	RU(20ns/ ^t CK,avg)

Table 4-188: CA Bus Training Parameters

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Demension	Or make al	Min/	Data	11	Nataa	
Parameter	Symbol	Max	1600	3200	Unit	Notes
Valid clock requirement after CKE Input LOW	¹ CKELCK	Min	MAX(5n	s, 5nCK)	^t CK	
Data setup for VREF training mode	^t DStrain	Min	2		ns	
Data hold for VREF training mode	^t DHtrain	Min	2	2	ns	
Asynchronous data read	^t ADR	Max	2	0	ns	
CA BUS TRAINING command-to-command delay	^t CACD	Min	RU(^t AE)R/ ^t CK)	^t CK	1
Valid strobe requirement before CKE LOW	^t DQSCKE	Min	1	0	ns	
First CA BUS TRAINING command following CKE LOW	^t CAENT	Min	25	50	ns	
V _{REF} step time – multiple steps	^t VREF-ca_LONG	Max	x 250		ns	
V _{REF} step time – one step	^t VREF-ca_SHORT	Max	80		ns	
Valid clock requirement before CS HIGH	^t CKPRECS	Min	2 ^t CK + ^t XP		_	
Valid clock requirement after CS HIGH	^t CKPSTCS	Min	MAX(7.5r	ns, 5nCK)	_	
Minimum delay from CS to DQS to DQS to DQS	^t CS_VREF	Min	2	2	^t CK	
Minimum delay from CKE HIGH to strobe High-Z	^t CKEHDQS	Min	1	0	ns	
CA bus training CKE HIGH to DQ tri-state	^t MRZ	Min	1.	1.5		
ODT turn-on latency from CKE	^t CKELODTon	Min	2	0	ns	
ODT turn-off latency from CKE	^t CKEHODT-	Min	20		ns	
	^t XCBT_Short	Min	MAX(200	ns, 5nCK)	-	2
Exit command bus training mode to	^t XCBT_Middle	Min	MAX(200	MAX(200ns, 5nCK)		2
	^t XCBT_Long	Min	MAX(250	ns, 5nCK)	-	2

Note:

1. If ^tCACD is violated, the data for samples that violate ^tCACD will not be available, exceptfor the last sample (where ^tCACDafter this sample is met). Valid data for the last samplewill be available after ^tADR.

2. Exit command bus training mode to next valid command delay time depends on valueof V_{REF(CA)} setting: MR12 OP[5:0] and V_{REF(CA)} range: MR12 OP[6] of FSP-OP 0 and 1. Thedetails are shown in ^tFC value mapping table. Additionally exit command bus trainingmode to next valid command delay time may affect V_{REF(DQ)} setting. Settling time ofV_{REF(DQ)} level is same as V_{REF(CA)} level.

Table 4-189: Asynchronous ODT Turn On and Turn Off Timing

	· · · · · · · · · · · · · · · · · · ·	
Symbol	800–1600 MHz	Unit
^t ODTon,min	1.5	ns
^t ODTon,max	3.5	ns
^t ODToff,min	1.5	ns
^t ODToff,max	3.5	ns

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-190: Temperature Derating Parameters

Deremeter	Symphol	Min/	Data	Unit	
Parameter	Symbol	Max	1600	3200	Unit
DQS output access time from CK_t/ CK_c (derated)	^t DQSCKd	Max	3600		ps
RAS-to-CAS delay (derated)	^t RCDd	Min	^t RCD + 1.875		ns
ACTIVATE-to-ACTIVATE command period (same bank, derated)	^t RCd	Min	^t RC + 3.75		ns
Row active time (derated)	^t RASd	Min	^t RAS + 1.875		ns
Row precharge time (derated)	^t RPd	Min	^t RP +	1.875	ns
Active bank A to active bank B (derated)	^t RRD	Min	^t RRD +	· 1.875	ns

Note:

1. At higher temperatures (>85°C), AC timing derating may be required. If derating is required the device will set MR4 OP[2:0] = 110b.

4.53CA Rx Voltage and Timing

The command and address (CA), including CS input receiver compliance mask for voltageand timing, is shown in the CA Receiver (Rx) Mask figure below. All CA and CS signalsapply the same compliance mask and operate in single data rate mode.

The CA input Rx mask for voltage and timing is applied across all pins, as shown in thefigure below. The Rx mask defines the area that the input signal must not encroach if the DRAM input receiver is expected to successfully capture a valid input signal; it is not valid data eye.

Figure 4-151: CA Receiver (Rx) Mask

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-152: Across Pin VREF (CA) Voltage Variation

 $V_{CENT_CA(pin mid)}$ is defined as the midpoint between the largest V_{CENT_CA} voltage leveland the smallest V_{CENT_CA} voltage level across all CA and CS pins for a given DRAMcomponent. Each CA V_{CENT} level is defined by the center, which is, the widest opening of the cumulative data input eye, as depicted in the figure above. This clarifies that anyDRAM component level variation must be accounted for within the CA Rx mask. The component-level V_{REF} will be set by the system to account for R_{ON} and ODT settings.

Figure 4-153: CA Timings at the DRAM Pins

CK, CK Data-in at DRAM Pin Minimum CA eye center aligned CK_c CK_t CK_t Rx mask DRAM pin t_{cIVW}

TcIVW for all CA signals is defined as centered on the CK_t/CK_c crossing at the DRAM pin.

Note:

1. All of the timing terms in above figure are measured from the CK_t/CK_c to the center(midpoint) of the TcIVW window takenat the VcIVW_total voltage levels centeredaround V_{CENT_CA(pin mid)}.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-154: CA ^tcIPW and SRIN_cIVW Definition (for Each Input Pulse)

Note:

1. SRIN_cIVW = V_{dIVW_total}/(^tr or ^tf); signal must be monotonic within ^tr and ^tf range.

Figure 4-155: CA V_{IHL_AC} Definition (for Each Input Pulse)

Table 4-191: DRAM CMD/ADR, CS

UI = ^tCK(AVG)MIN

Symbol	Deremeter	DQ - 1333 ⁷		DQ -1600/1866		DQ - 3200		Unit	Notos
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Onit	Notes
V _{cIVW}	Rx mask voltage peak-to-peak	_	175	_	175	_	155	mV	1, 2, 3
VIHL(AC)	CA AC input pulse ampli-tude peak-to-peak	210	_	210	_	190	-	mV	4, 6
SRIN_clVW	Input slew rate over V _{clVW}	1	7	1	7	1	7	V/ns	5

Notes:

1. CA Rx mask voltage and timing parameters at the pin, including voltage and temperaturedrift.

2. Rx mask voltage V_{cIVW} total (MAX) must be centered around V_{CENT_CA(pin mid)}.

3. Defined over the CA internal V_{REF} range. The Rx mask at the pin must be within the internal $V_{REF(CA)}$ range irrespective of the input signal common mode.

4. CA-only input pulse signal amplitude into the receiver must meet or exceed V_{IHL(AC)} atany point over the total UI. No timingrequirement above level. V_{IHL(AC)} is the peak-topeakvoltage centered around V_{CENT_CA(pin mid)}, such that V_{IHL(AC)/2} (MIN) mustbe metboth above and below V_{CENT_CA}.

5. Input slew rate over V_{cIVW} mask is centered at $V_{CENT_CA(pin mid)}$.

6. $V_{IHL(AC)}$ does not have to be met when no transitions are occurring.

7. The Rx voltage and absolute timing requirements apply for DQ operating frequencies ator below 1333 for all speed bins. Forexample the ^tcIVW(ps) = 450ps at or below 1333operating frequencies.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.54DQ Tx Voltage and Timing

DRAM Data Timing

Figure 4-156: Read Data Timing Definitions – ^tQH and ^tDQSQ Across DQ Signals per DQS Group

4.55DQ Rx Voltage and Timing

The DQ input receiver mask for voltage and timing is applied per pin, as shown in theDQ Receiver (Rx) Mask figure below. The total mask ($V_{dIVW_{total}}$, TdIVW_total) defines the area that the input signal must not encroach in order for the DQ input receiver tosuccessfully capture an input signal. The mask is a receiver property, and it is not thevalid data eye.

Figure 4-157: DQ Receiver (Rx) Mask

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-158: Across Pin V_{REF} DQ Voltage Variation

 $V_{CENT_DQ(pin_mid)}$ is defined as the midpoint between the largest V_{CENT_DQ} voltage leveland the smallest V_{CENT_DQ} voltage level across all DQ pins for a given DRAM component.Each V_{CENT_DQ} is defined by the center, which is the widest opening of the cumulativedata input eye as shown in the figure above. This clarifies that any DRAM componentlevel variation must be accounted for within the DRAM Rx mask. The componentlevelV_{REF} will be set by the system to account for R_{ON} and ODT settings.

Figure 4-159: DQ-to-DQS ^tDQS2DQ and ^tDQDQ

DQ, DQS Data-in at DRAM Latch

Internal componsite data-eye center aligned to DQS

All DQ signals center aligned to the strobe at the device internal latch

DQS, DQs Data-in Skews at DRAM

Nonminimum data-eye/maximum Rx mask

Notes:

- 1. These timings at the DRAM pins are referenced from the internal latch.
- 2. ^tDQS2DQ is measured at the center (midpoint) of the TdIVW window.
- 3. DQz represents the MAX ^tDQS2DQ in this example.
- 4. DQy represents the MIN ^tDQS2DQ in this example.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

All of the timing terms in DQ to DQS_t are measured from the DQS_t/DQS_c to the center(midpoint) of the TdIVW window taken at the V^{dIVW_total} voltage levels centeredaround V_{CENT_DQ(pin_mid)}. In figure above, the timings at the pins are referenced with respect o all DQ signals center-aligned to the DRAM internal latch. The data-to-data offset defined as the difference between the MIN and MAX ^tDQS2DQ for a given component.

Figure 4-160: DQ ^tDIPW and SRIN_dIVW Definition for Each Input Pulse

Note:

1. SRIN_dIVW = $V_{dIVW \text{ total}}/(^{t}r \text{ or }^{t}f)$ signal must be monotonic within ^{t}r and ^{t}f range.

Figure 4-161: DQ V_{IHL(AC)} Definition (for Each Input Pulse)

Table 4-192: DQs In Receive Mode

Note UI=^tCK(AVG)(MIN)/2

Symbol	Deremeter	1600/1867		2133	/2400	3200		llmit	Natas
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Onit	Notes
VdlVW_total	Rx mask voltage – peak-to-peak	Η	140	_	140	Ι	140	mV	1, 2, 3
VIHL(AC)	DQ AC input pulse ampli-tude peak-to-peak	180	_	180	_	180	Ι	mV	5, 7
SRIN_dIVW	Input slew rate over $V_{\text{dIVW}_\text{total}}$	1	7	1	7	1	7	V/ns	6

Notes:

1. Data Rx mask voltage and timing parameters are applied per pin and include the DRAMDQ-to-DQS voltage AC noiseimpact for frequencies >20 MHz with a maximum voltageof 45mV peak-to-peak at a fixed temperature on the package. Thevoltage supply noisemust comply to the component MIN/MAX DC operating conditions.

2. Rx mask voltage VdIVW_total (MAX) must be centered around $V_{CENT_DQ(pin_mid)}$.

3. Defined over the DQ internal V_{REF} range. The Rx mask at the pin must be within the internalV_{REF} DQ range irrespective of the input signal common mode.

4. Deterministic component of the total Rx mask voltage or timing. Parameter will be characterized and guaranteed by design.

 DQ-only input pulse amplitude into the receiver must meet or exceed V_{IHL(AC)} at anypoint over the total UI. No timingrequirement above level. V_{IHL(AC)} is the peak-to-peakvoltage centered around V_{CENT_DQ(pin_mid)}, such thatV_{IHL(AC)}/2 (MIN)

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

must be met bothabove and below V_{CENT_DQ} .

6. Input slew rate over VdIVW mask centered at $V_{\text{CENT}_\text{DQ(pin}_mid)}.$

7. $V_{\text{IHL}(\text{AC})}$ does not have to be met when no transitions are occurring.

4.56 Clock Specification

The specified clock jitter is a random jitter with Gaussian distribution. Input clocks violatingminimum or maximum values may result in device malfunction.

Table 4-193: Definitions a	nd Calculations
----------------------------	-----------------

Symbol	Description	Calculation	Notes
^t CK(avg) and <i>n</i> CK	The average clock period across any consecutive 200-cycle window. Each clock period is calculated from rising clock edge to rising clock edge. Unit ${}^{t}CK(avg)$ represents the actual clock average ${}^{t}CK(avg)$ of the input clock under operation. Unit <i>n</i> CK represents one clock cycle of the input clock, counting from actual clock edge to actual clock edge.	$t_{CK(avg)} = \left(\sum_{j=1}^{N} t_{CK_j}\right) / N$ Where N = 200	
	100-clock-cycle window, provided that all jitter and timing specifications are met.		
^t CK(abs)	The absolute clock period, as measured from one rising clock edge to the next consecutive rising clock edge.		1
^t CH(avg)	The average HIGH pulse width, as calculated across any 200 consecutive HIGH pulses.	$t_{CH(avg)} = \left(\sum_{j=1}^{N} t_{CH_j}\right) / (N \times t_{CK(avg)})$ Where N = 200	
^t CL(avg)	The average LOW pulse width, as calculated across any 200 consecutive LOW pulses.	$t_{CL(avg)} = \left(\sum_{j=1}^{N} t_{CL_j}\right) / (N \times t_{CK(avg)})$ Where N = 200	
^t JIT(per)	The single-period jitter defined as the largest deviation of any signal ^t CK from ^t CK(avg).	$t_{JIT(per)} = min/max of \left[t_{CK_i} - t_{CK(avg)} \right]$ Where i = 1 to 200	1
^t JIT(per),act	The actual clock jitter for a given system.		
^t JIT(per), allowed	The specified clock period jitter allowance.		
^t JIT(cc)	The absolute difference in clock periods between two consecutive clock cycles. ^t JIT(cc) defines the cycle-to-cycle jitter.	$t_{JIT(cc)} = \max \text{ of } \left[t_{CK_{i+1}} - t_{CK_i} \right]$	1
^t ERR(nper)	The cumulative error across <i>n</i> multiple consecu- tive cycles from ^t CK(avg).	$t_{ERR(nper)} = \left(\sum_{j=i}^{i+n-1} t_{CK_j}\right) - (n \times t_{CK(avg)})$	1
^t ERR(nper),act	The actual clock jitter over <i>n</i> cycles for a given system.		

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-193: Definitions and Calculations (Continued)

Symbol	Description	Calculation	Notes
^t ERR(nper), allowed	The specified clock jitter allowance over <i>n</i> cycles.		
^t ERR(nper),min	The minimum ^t ERR(nper).	^t ERR(nper),min = (1 + 0.68LN(n)) × ^t JIT(per),min	2
^t ERR(nper),max	The maximum ^t ERR(nper).	^t ERR(nper),max = (1 + 0.68LN(n)) × ^t JIT(per),max	2
^t JIT(duty)	Defined with absolute and average specifications for ^t CH and ^t CL, respectively.	^t JIT(duty),min = MIN((^t CH(abs),min – ^t CH(avg),min), (^t CL(abs),min – ^t CL(avg),min)) × ^t CK(avg) ^t JIT(duty),max = MAX((^t CH(abs),max – ^t CH(avg),max),	
		$(^{t}CL(abs),max - {}^{t}CL(avg),max)) \times {}^{t}CK(avg)$	

Notes:

1. Not subject to production testing.

2. Using these equations, ^tERR(nper) tables can be generated for each ^tJIT(per),act value.

^tCK(abs), ^tCH(abs), and ^tCL(abs)

These parameters are specified with their average values; however, the relationship betweenthe average timing and the absolute instantaneous timing (defined in the followingtable) is applicable at all times.

Table 4-194: ^tCK(abs), ^tCH(abs), and ^tCL(abs) Definitions

Parameter	Symbol	Minimum	Unit
Absolute clock period	^t CK(abs)	^t CK(avg),min + ^t JIT(per),min	ps1
Absolute clock HIGH pulse width	^t CH(abs)	^t CH(avg),min + ^t JIT(duty),min2/ ^t CK(avg)min	^t CK(avg)
Absolute clock LOW pulse width	^t CL(abs)	^t CL(avg),min + ^t JIT(duty),min2/ ^t CK(avg)min	^t CK(avg)

Notes:

1. ^tCK(avg),min is expressed in ps for this table.

2. ^tJIT(duty),min is a negative value.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.57 Clock Period Jitter

LPDDR4 devices can tolerate some clock period jitter without core timing parameterderating. This section describes device timing requirements with clock period jitter(^tJIT(per)) in excess of the values found in the AC Timing table. Calculating cycle timederating and clock cycle derating are also described.

Clock Period Jitter Effects on Core Timing Parameters

Core timing parameters (^tRCD, ^tRP, ^tRTP, ^tWR, ^tWRA, ^tWTR, ^tRC, ^tRAS, ^tRRD, ^tFAW) extendacross multiple clock cycles. Clock period jitter impacts these parameters whenmeasured in numbers of clock cycles. Within the specification limits, the device is characterized and verified to support ^tnPARAM = RU[^tPARAM/^tCK(avg)]. During device operationwhere clock jitter is outside specification limits, the number of clocks, or^tCK(avg), may need to be increased based on the values for each core timing parameter.

Cycle Time Derating for Core Timing Parameters

For a given number of clocks (^tnPARAM), when ^tCK(avg) and ^tERR(tnPARAM),act exceed^tERR(^tnPARAM),allowed, cycle time derating may be required for core timing parameters.

 $CycleTimeDerating = max \left[\frac{t_{PARAM} + t_{ERR}(t_{nPARAM}), act - t_{ERR}(t_{nPARAM}), allowed}{t_{nPARAM}} - t_{CK}(avg) \right], 0 \right\}$

Cycle time derating analysis should be conducted for each core timing parameter. Theamount of cycle time derating required is the maximum of the cycle time deratings determined for each individual core timing parameter.

Clock Cycle Derating for Core Timing Parameters

For each core timing parameter and a given number of clocks (^tnPARAM), clock cyclederating should be specified with ^tJIT(per).

For a given number of clocks (^tnPARAM), when ^tCK(avg) plus (^tERR(^tnPARAM),act) exceed the supported cumulative ^tERR(tnPARAM),allowed, derating is required. If the equation below results in a positive value for a core timing parameter (^tCORE), the required clock cycle derating will be that positive value (in clocks).

 $ClockCycleDerating = RU \left\{ \frac{t_{PARAM} + t_{ERR}(t_{nPARAM}), act - t_{ERR}(t_{nPARAM}), allowed}{t_{CK}(avg)} \right\} - t_{nPARAM}$

Cycle-time derating analysis should be conducted for each core timing parameter.

Clock Jitter Effects on Command/Address Timing Parameters

Command/address timing parameters (^tIS, ^tIH, ^tISb, ^tIHb) are measured from a commandaddress signal (CS or CA[5:0]) transition edge to its respective clock signal (CK_t/CK_c) crossing. The specification values are not affected by the ^tJIT(per) applied, because the setup and hold times are relative to the clock signal crossing that latches the command/address. Regardless of clock jitter values, these values must be met.

Clock Jitter Effects on READ Timing Parameters

^tRPRE

When the device is operated with input clock jitter, ^tRPRE must be derated by the^tJIT(per),act,max of the input clock that exceeds ^tJIT(per),allowed,max. Output deratingsare relative to the input clock:

 ${}^{t}\text{RPRE}(\text{min},\text{derated}) = 0.9 - \left(\frac{{}^{t}\text{JIT}(\text{per}),\text{act},\text{max} - {}^{t}\text{JIT}(\text{per}),\text{allowed},\text{max}}{{}^{t}\text{CK}(\text{avg})}\right)$

For example, if the measured jitter into a LPDDR4 device has ${}^{t}CK(avg) = 625ps, {}^{t}JIT(per),act,min = -xx$, and ${}^{t}JIT(per),act,max = +xx ps$, then ${}^{t}RPRE,min,derated = 0.9 - ({}^{t}JIT(per),act,max - {}^{t}JIT(per),allowed,max)/{}^{t}CK(avg) = 0.9 - (xx - xx)/xx = yy tCK(avg).$

^tLZ(DQ), ^tHZ(DQ), ^tDQSCK, ^tLZ(DQS), ^tHZ(DQS)

These parameters are measured from a specific clock edge to a data signal transition(DMn or DQm, where: n = 0,1; and m = 0-15, and specified timings must be met withrespect to that clock edge. Therefore, they are not affected by ^tJIT(per).

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

^tQSH, ^tQSL

These parameters are affected by duty cycle jitter, represented by ^tCH(abs)min and ^tCL(abs)min. These parameters determine the absolute data-valid window at the devicepin. The absolute minimum data-valid window at the device pin = MIN {(^tQSH(abs)min- ^tDQSQmax), (^tQSL(abs)min - ^tDQSQmax)}. This minimum data valid window must be met at the target frequency regardless of clock jitter.

^tRPST

^tRPST is affected by duty cycle jitter, represented by ^tCL(abs). Therefore, ^tRPST(abs)mincan be specified by ^tCL(abs)min. ^tRPST(abs)min = ^tCL(abs)min - 0.05 = ^tQSL(abs)min.

Clock Jitter Effects on WRITE Timing Parameters ¹DS. tDH

These parameters are measured from a data signal (DMIn or DQm, where n = 0, 1 and m = 0-15) transition edge to its respective data strobe signal (DQSn_t, DQSn_c: n = 0,1)crossing. The specification values are not affected by the amount of ^tJIT(per) applied, because the setup and hold times are relative to the data strobe signal crossing that latches the command/address. Regardless of clock jitter values, these values must bemet.

^tDSS, tDSH

These parameters are measured from a data signal (DQS_t, DQSn_c) crossing to its respectiveclock signal (CK_t, CK_c) crossing. When the device is operated with inputclock jitter, this parameter needs to be derated by the actual 'JIT(per)act of the input clockin excess of the allowed period jitter 'JIT(per)allowed.

^tDQSS

^tDQSS is measured from a data strobe signal (DQSn_t, DQSn_c) crossing to its respectiveclock signal (CK_t, CK_c) crossing. When the device is operated with input clock jitter,this parameter must be derated by the actual ^tJIT(per),act of the input clock in excessof ^tJIT(per)allowed.

 $\label{eq:DQSS} t_{DQSS(min,derated)} = 0.75 - \binom{t_{JIT(per),act,min-t_{JIT(per),allowed,min}}{t_{CK(avg)}}$

 $t_{DQSS(max,derated)} = 1.25 - \left[\frac{t_{JIT(per),act,max} - t_{JIT(per),allowed,max}}{t_{CK(avg)}}\right]$

For example, if the measured jitter into an LPDDR4 device has ^tCK(avg) = 625ps, ^tJIT(per),act,min = -xxps, and ^tJIT(per),act,max = +xx ps, then: ^tDQSS,(min,derated) = 0.75 - (-xx + yy)/625 = xxxx ^tCK(avg) ^tDQSS,(max,derated) = 1.25 - (xx - yy)/625 = xxxx ^tCK(avg)

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.58 LPDDR4 1.10V VDDQ

This section defines LPDDR4 specifications to enable 1.10 V_{DDQ} operation of LPDDR4devices.

Power-Up and Initialization

To ensure proper functionality for power-up and reset initialization, default values for the MR settings are provided in the table below.

Table 4-195: Mode Register Default Settings

Item	Mode Register Setting	Default Setting	Description
FSP-OP/WR	MR13 OP[7:6]	00b	FSP-OP/WR[0] are enabled
WLS	MR2 OP[6]	0b	WRITE latency set A is selected
WL	MR2 OP[5:3]	000b	WL = 4
RL	MR2 OP[2:0]	000b	RL = 6, <i>n</i> RTP = 8
nWR	MR1 OP[6:4]	000b	nWR = 6
DBI-WR/RD	MR3 OP[7:6]	00b	Write and read DBI are disabled
CA ODT	MR11 OP[6:4]	000b	CA ODT is disabled
DQ ODT	MR11 OP[2:0]	000b	DQ ODT is disabled
V _{REF(CA)} setting	MR12 OP[6]	1b	$V_{\text{REF}(CA)}$ range[1] is enabled
V _{REF(CA)} value	MR12 OP[5:0]	001101b	Range1: 27.2% of V _{DD2}
V _{REF(DQ)} setting	MR14 OP[6]	1b	$V_{\text{REF}(DQ)}$ range[1] enabled
V _{REF(DQ)} value	MR14 OP[5:0]	001101b	Range1: 27.2% of V _{DDQ}

Mode Register Definition

Mode register definitions are provided in the Mode Register Assignments table. In theaccess column of the table, R indicates read-only; W indicates write-only; R/W indicates read- or write-capable or enabled. The MRR command is used to read from a register.

The MRW command is used to write to a register.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-196: Mode Register Assignments

Notes	1–5 apply	to entire table										
MR#	MA[5:0]	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
0	00h	Device info	R	CATR	RFU RFU RZQI		RFU	Latency mode	REF			
1	01h	Device feature 1	W	RD-PST	n	WR (for AF	^{>})	RD-PRE	WR-PRE	В	L	
2	02h	Device feature 2	W	WR Lev	WLS		WL			RL		
3	03h	I/O config-1	W	DBI-WR	DBI-RD		PDDS		PPRP	WR-PST	PU-CAL	
4	04h	Refresh and training	R /W	TUF	Therma	al offset	PPRE	SR abort	F	Refresh rate		
5	05h	Basic config-1	R				Manufac	turer ID				
6	06h	Basic config-2	R				Revisi	on ID1				
7	07h	Basic config-3	R				Revisi	on ID2				
8	08h	Basic config-4	R	I/O v	width		Den	sity		Ту	ре	
9	09h	Test mode	W			Ve	endor-speci	fic test mo	de		-	
10	0Ah	I/O calibration	W		RFU						ZQ RST	
11	0Bh	ODT	W	RFU		CA ODT RFU			DQ ODT			
12	0Ch	VREF(CA)	R/W	RFU	VRCA			VREF	(CA)			
13	0Dh	Register control	W	FSP-OP	FSP-WR	DMD	RRO	VRCG	VRO	RPT	CBT	
14	0Eh	VREF(DQ)	R/W	RFU	VRDQ			VREF	(DQ)			
15	0Fh	DQI-LB	W		I	Lower-byte	invert regi	ster for DQ	calibration	l		
16	10h	PASR_Bank	W				PASR ba	ink mask				
17	11h	PASR_Seg	W				PASR segi	ment mask				
18	12h	IT-LSB	R			DG	S oscillato	r count – L	SB			
19	13h	IT-MSB	R			DQ	S oscillato	⁻ count – M	SB			
20	14h	DQI-UB	W		I	Upper-byte	invert regi	ster for DQ	calibration	l		
21	15h	Vendor use	W				RF	Ū				
22	16h	ODT feature 2	W	ODTD fo	or x8_2ch	ODTD-CA	ODTE-CS	ODTE-CK		SoC ODT		
23	17h	DQS oscillator stop	W			DQS	oscillator	run-time se	tting			
24	18h	TRR control	R/W	TRR mode	TF	RR mode B	An	Unltd MAC	ſ	MAC value	;	
25	19h	PPR resources	R	B7	B6	B5	B4	B3	B2	B1	B0	
26-29	1Ah~1Dh	_	-			F	Reserved fo	or future us	e			

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-196: Mode Register Assignments(Continued) Nates 1, 5 apply to antijo table

MR#	MA[5:0]	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
30	1Eh	Reserved for test	W	SDRAM will ignore							
31	1Fh	-	-			R	eserved fo	or future us	e		
32	20h	DQ calibration pattern A	W			See	e DQ calib	ration sect	ion		
33-38	21h≈26h	Do not use	-				Do no	ot use			
39	27h	Reserved for test	W				SDRAM	vill ignore			
40	28h	DQ calibration pattern B	W		See DQ calibration section						
41-47	29h $pprox$ 2Fh	Do not use	_	Do not use							
48-63	30h $pprox$ 3Fh	Reserved	_			R	eserved fo	or future us	e		

Notes:

1. RFU bits must be set to 0 during MRW commands.

2. RFU bits are read as 0 during MRR commands.

3. All mode registers that are specified as RFU or write-only shall return undefined datawhen read via an MRR command.

4. RFU mode registers must not be written.

5. Writes to read-only registers will not affect the functionality of the device.

Table 4-197: MR0 Device Feature 0 (MA[5:0] = 00h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
CATR	RI	FU	RZ	QI	RFU	Latency mode	REF

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-198: MR0 Device Feature	0	(MA[5:0] = 00h)
---------------------------------	---	-----------------

Register Information	Туре	OP	Definition	Notes				
Refresh mode	Read only	OP[0]	0b: Both legacy and modified refresh mode supported 1b: Only					
	rioud only	0.[0]	modified refresh mode supported					
Latency mode	Read only		0b: Device supports normal latency 1b: Device supports byte mode	5.6				
	I tead only	0,[1]	latency	5, 0				
			00b: RZQ self-test not supported					
Built in self test for			01b: ZQ may connect to V _{SSQ} or float					
PZO information	Read only	OP[4:3]	10b: ZQ may short to V _{DDQ}	1–4				
			11b: ZQ pin self-test completed, no error condition detected					
			(ZQ may not connect to V_{SSQ} , float, or short to V_{DDQ})					
CA terminating rank	Pood only	0.0177	0b: CA for this rank is not terminated 7					
CA terminating rank	Read Only		1b: CA for this rank is terminated	/				

Notes:

1. RZQI MR value, if supported, will be valid after the following sequence:

- Completion of MPC[ZQCAL START] command to either channel
- Completion of MPC[ZQCAL LATCH] command to either channel then ^tZQLAT is satisfied

RZQI value will be lost after reset.

- 2. If ZQ is connected to V_{SSQ} to set default calibration, OP[4:3] must be set to 01b. If ZQ isnot connected to V_{SSQ} , eitherOP[4:3] = 01b or OP[4:3] = 10b might indicate a ZQ pin assembly error. It is recommended that the assembly error becorrected.
- 3. In the case of possible assembly error, the device will default to factory trim settings forRON, and will ignore ZQCALIBRATION commands. In either case, the device may notfunction as intended.
- 4. If the ZQ pin self-test returns OP[4:3] = 11b, the device has detected a resistor connected to the ZQ pin. However, this resultcannot be used to validate the ZQ resistor value orthat the ZQ resistor meets the specified limits (that is, 240Ω±1%)
 5. See byte mode addendum spec for byte mode latency details.
- 6.Byte mode latency for 2Ch. x16 device is only allowed when it is stacked in a same packagewith byte mode device.
- 7.CATR indicates whether CA for the rank will be terminated or not as a result of ODTCApad connection and MR22 OP[5]settings for x16 devices, MR22 OP[7:5] settings for bytemode devices.

Table 4-199: MR3 I/O Configuration 1 (MA[5:0] = 03h)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
DBI-WR	DBI-RD		PDDS		PPRP	WR-PST	PU-CAL

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Feature	Туре	OP	Definition	Notes	
PU-CAL		0.0101	0b: VDDQ/2.5	1.4	
(Pull-up calibration point)		OP[0]	1b: VDDQ/3 (default)	1-4	
WR-PST		00[4]	0b: WR postamble = 0.5 × tCK (default)	225	
(WR postamble length)			1b: WR postamble = 1.5 × tCK	2, 3, 5	
PPRP		00(2)	0b: PPR protection disabled (default)	6	
(Post-package repair protection)			1b: PPR protection enabled	б	
			000b: RFU		
			001b: RZQ/1	1, 2, 3	
			010b: RZQ/2		
PDDS	white-only		011b: RZQ/3		
(Pull-down drive strength)		0P[5.3]	100b: RZQ/4		
			101b: RZQ/5		
			110b:RZQ/6 (default)		
			111b: Reserved		
DBI-RD		ODICI	0b: Disabled (default)	0.0	
(DBI-read enable)		ΟΡ[6]	1b: Enabled	2, 3	
DBI-WR		00171	0b: Disabled (default)	2.2	
(DBI-write enable)			1b: Enabled	∠, s	

Notes:

1. All values are typical. The actual value after calibration will be within the specified tolerancefor a given voltage andtemperature. Recalibration may be required as voltage andtemperature vary.

2. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. Only theregisters for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW commandto this MRaddress, or read from with an MRR command to this address.

- 3. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. The devicewill operate only according to the values stored in the registers for the active set point, for example, the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, andmay be changed without affecting device operation.
- 4.For dual channel device, PU-CAL (MR3-OP[0]) must be set the same for both channels ona die. The SDRAM will read thevalue of only one register (Ch.A or Ch.B), vendor-specific, so both channels must be set the same.

 $5.1.5 \times tCK$ apply ≥ 1.6 GHz clock.

6.If MR3 OP[2] is set to 1b, PPR protection mode is enabled. The PPR protection bit is asticky bit and can only be set to 0b by a power on reset. MR4 OP[4] controls entry to PPRmode. If PPR protection is enabled then the DRAM will not allow writingof 1b to MR4OP[4].

Table 4-201: MR3 Op-Code Bit Definitions

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
RFU	VR _{CA}			V _{RE}	F(CA)		

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Feature	Туре	OP	Data	Notes		
VREF(CA)	Read/		000000b–110010b: See V _{REF} Settings Table	1356		
V _{REF(CA)} settings	Write	0F[3.0]	All others: Reserved			
VR _{CA}	Read/		0b: V _{REF(CA)} range[0] enabled	10156		
V _{REF(CA)} range	Write		1b: V _{REF(CA)} range[1] enabled (default)	1, 2, 4, 5, 6		

Notes:

Table 4 00

1. This register controls the V_{REF(CA)} levels for frequency set point[1:0]. Values from eitherVR(ca)[0] or VR(ca)[1] may beselected by setting MR12 OP[6] appropriately.

2.A read to MR12 places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQwill be set to 0. See the MRROperation section.

- 3.A write to MR12 OP[5:0] sets the internal $V_{REF(CA)}$ level for FSP[0] when MR13 OP[6] = 0bor sets the internal $V_{REF(CA)}$ level for FSP[1] when MR13 OP[6] = 1b. The time required for $V_{REF(CA)}$ to reach the set level depends on the step size from the current level to the newlevel. See the $V_{REF(CA)}$ training section.
- 4.A write to MR12 OP[6] switches the device between two internal V_{REF(CA)} ranges. Therange (range[0] or range[1]) mustbe selected when setting the V_{REF(CA)} register. The value,once set, will be retained until overwritten or until the nextpower-on or resetevent.
- 5. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. Only theregisters for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW commandto this MRaddress, or read from with an MRR command to this address.
- 6. There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Thedevice will operate only according to the values stored in the registers for the active set point, for example, the set pointdetermined by thestate of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive setpoint will be ignored by the device, and may be changed without affecting device operation.

Table 4-203: Mode Register 14 (MA[5:0] = 0Eh)

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
RFU				VRE	F(DQ)		

XIN 🕱 CUN

a da Dit Dafinitian

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Feature	Туре	OP	Data	
VREF(DQ)			000000b–110010b: See V _{REF} Settings Table	1356
V _{REF(DQ)} settings	Read/	0F[3.0]	All others: Reserved	1-3, 3, 0
VR _{DQ}	Write		0b: V _{REF(DQ)} range[0] enabled	1 2 4 6
V _{REF(DQ)} range			1b: V _{REF(DQ)} range[1] enabled (default)	1, 2, 4–0

Notes:

1. This register controls the V_{REF(DQ)} levels for frequency set point[1:0]. Values from eitherVR_{DQ} [vendor defined] or VR_{DQ}[vendor defined] may be selected by setting OP[6] appropriately.

2.A read (MRR) to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits andunused DQ will be set to 0. See the MRR Operation section.

- 3.A write to OP[5:0] sets the internal $V_{REF(DQ)}$ level for FSP[0] when MR13 OP[6] = 0b, orsets FSP[1] when MR13 OP[6] =1b. The time required for $V_{REF(DQ)}$ to reach the set leveldepends on the step size from the current level to the new level. See the $V_{REF(DQ)}$ trainingsection.
- 4.A write to OP[6] switches the device between two internal V_{REF(DQ)} ranges. The range(range[0] or range[1]) must beselected when setting the V_{REF(DQ)} register. The value,once set, will be retained until overwritten, or until the nextpower-on or reset event.
- 5. There are two physical registers assigned to each bit of this MR parameter, designatedset point 0 and set point 1. Only theregisters for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW commandto this MRaddress, or read from with an MRR command to this address.
- 6. There are two physical registers assigned to each bit of this MR parameter, designated set point 0, and set point 1. Thedevice will operate only according to the values stored in the registers for the active set point, for example, the set pointdetermined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive setpoint will be ignored by the device, and may be changed without affecting device operation.

XIN 🕸 CUN

Table 4-205: V_{REF} Setting for Range[0] and Range[1] Notes 1–3 apply to entire table

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

	<u></u>	Range	e[0] Values	Range[1] V	/alues	
Function	OP	VREF(CA	(% of V _{DD2})	V _{REF(CA)} (% c	of V _{DD2})	
		VREF(DQ)	(% of V_{DDQ})	$V_{REF(DQ)}$ (% of V_{DDQ})		
		000000b: 10.0%	011010b: 20.4%	000000b: 22.0%	011010b: 32.4%	
		000001b: 10.4%	011011b: 20.8%	000001b: 22.4%	011011b: 32.8%	
		000010b: 10.8%	011100b: 21.2%	000010b: 22.8%	011100b: 33.2%	
		000011b: 11.2%	011101b: 21.6%	000011b: 23.2%	011101b: 33.6%	
		000100b: 11.6%	011110b: 22.0%	000100b: 23.6%	011110b: 34.0%	
		000101b: 12.0%	011111b: 22.4%	000101b: 24.0%	011111b: 34.4%	
		000110b: 12.4%	100000b: 22.8%	000110b: 24.4%	100000b: 34.8%	
		000111b: 12.8%	100001b: 23.2%	000111b: 24.8%	100001b: 35.2%	
		001000b: 13.2%	100010b: 23.6%	001000b: 25.2%	100010b: 35.6%	
		001001b: 13.6%	100011b: 24.0%	001001b: 25.6%	100011b: 36.0%	
		001010b: 14.0%	100100b: 24.4%	001010b: 26.0%	100100b: 36.4%	
		001011b: 14.4%	100101b: 24.8%	001011b: 26.4%	100101b: 36.8%	
V _{REF} setting		001100b: 14.8%	100110b: 25.2%	001100b: 26.8%	100110b: 37.2%	
and MP14	0F[5.0]	001101b: 15.2%	100111b: 25.6%	001101b: 27.2% de-fault	100111b: 37.6%	
		001110b: 15.6%	101000b: 26.0%	001110b: 27.6%	101000b: 38.0%	
		001111b: 16.0%	101001b: 26.4%	001111b: 28.0%	101001b: 38.4%	
		010000b: 16.4%	101010b: 26.8%	010000b: 28.4%	101010b: 38.8%	
		010001b: 16.8%	101011b: 27.2%	010001b: 28.8%	101011b: 39.2%	
		010010b: 17.2%	101100b: 27.6%	010010b: 29.2%	101100b: 39.6%	
		010011b: 17.6%	101101b: 28.0%	010011b: 29.6%	101101b: 40.0%	
		010100b: 18.0%	101110b: 28.4%	010100b: 30.0%	101110b: 40.4%	
		010101b: 18.4%	101111b: 28.8%	010101b: 30.4%	101111b: 40.8%	
		010110b: 18.8%	110000b: 29.2%	010110b: 30.8%	110000b: 41.2%	
		010111b: 19.2%	110001b: 29.6%	010111b: 31.2 <mark>%</mark>	110001b: 41.6%	
		011000b: 19.6%	110010b: 30.0%	011000b: 31.6%	110010b: 42.0%	
		011001b: 20.0%	All others: Reserved	011001b: 32.0%	All others: Reserved	

Notes:

1. These values may be used for MR14 OP[5:0] and MR12 OP[5:0] to set the V_{REF(CA)} or V_{REF(DQ)} levels in the device.

^{2.} The range may be selected in each of the MR14 or MR12 registers by setting OP[6] appropriately.

^{3.}Each of the MR14 or MR12 registers represents either FSP[0] or FSP[1]. Two frequency setpoints each for CA and DQ areprovided to allow for faster switching between terminatedand unterminated operation or between different high-frequencysettings, whichmay use different terminations values.

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Op Op6 Op5 Op4 Op3 Op2 Op1 Op0									
ODTD fo	r x8_2ch	ODTD-CA	ODTE-CS	ODTE-CK		SOC ODT			

Table 4-207: MR22 Register Information

Feature	Туре	OP	Definition	Notes		
			000b: Disable (default)			
			001b: Rzq/1			
			010b: R _{ZQ} /2			
SOC ODT (controller ODT value	Write only	00[2:0]	011b: Rzq /3	100		
for V _{OH} calibration)	write-only		100b: R _{ZQ} /4	1, 2, 3		
			101b: R _{ZQ} /5			
			110b: R _{ZQ} /6			
			111b: RFU			
ODTE-CK (CK ODT enabled	Write only	0.0101	0b: ODT-CK override disabled (default)	22469		
for non-terminating rank)	write-only	0P[3]	1b: ODT-CK override enabled	2, 3, 4, 0, 8		
ODTE-CS (CS ODT enabled for		00[4]	0b: ODT-CS override disabled (default)	22500		
non-terminating rank)	write-only	OP[4]	1b: ODT-CS override enabled	2, 3, 5, 6, 8		
ODTD-CA (CA ODT termination		00/51	0b: CA ODT obeys ODT_CA bond pad (default)	0 0 0 7 0		
disable)	vvrite-only	0P[5]	1b: CA ODT disabled	∠, 3, ७, 7, 8		
ODTD for x8_2ch (Byte) mode	Write-only	OP[7:6]	See Byte Mode section			

Notes:

1. All values are typical.

- 2. There are two physical registers assigned to each bit of this MR parameter: designatedset point 0 and set point 1. Only theregisters for the set point determined by the stateof the FSP-WR bit (MR13 OP[6]) will be written to with an MRW commandor read from with an MRR command to this address.
- 3. There are two physical registers assigned to each bit of this MR parameter: designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point determined by the state of the FSP-OP bit (MR13OP[7]). The values in the registers for the inactive set point will be ignored by the device and may be changed without affecting device operation.
- 4.When OP[3] = 1 the CK signals will be terminated to the value set by MR11 OP[6:4] regardlessof the state of the ODT_CAbond pad. This overrides the ODT_CA bond pad forconfigurations where CA is shared by two or more devices but CK is not, enabling CK toterminate on all devices.
- 5.When OP[4] = 1 the CS signal will be terminated to the value set by MR11 OP[6:4] regardlessof the state of the ODT_CAbond pad. This overrides the ODT_CA bond pad forconfigurations where CA is shared by two or more devices but CS is not, enabling CS toterminate on all devices.
- 6.For system configurations where the CK, CS, and CA signals are shared between packages, the package design shouldprovide for the ODT_CA ball to be bonded on the systemboard outside of the memory package. This provides the necessary control of theODT function for all die with shared command bus signals.
- 7.When OP[5] = 0, CA[5:0] will terminate when the ODT_CA bond pad is HIGH and MR11OP[6:4] is valid and disabletermination when ODT_CA is LOW or MR11 OP[6:4] is disabled.When OP[5] = 1, termination for CA[5:0] is disabledregardless of the state of theODT_CA bond pad or MR11 OP[6:4].
- 8.To ensure proper operation in a multi-rank configuration, when CA, CK or CS ODT is enabledvia MR11 OP[6:4] and also viaMR22 or ODT_CA pad setting, the rank providingODT will continue to terminate the command bus in all DRAM statesincluding Active,Self-refresh, Self-refresh Power-down, Active Power-down and Precharge Power-down.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.59 Burst READ Operation - LPDDR4 ATE Condition ^tLZ(DQS), ^tLZ(DQ), ^tHZ(DQS), ^tHZ(DQ) Calculation

XIN 🕱 CUN

^tHZ and ^tLZ transitions occur in the same time window as valid data transitions. Theseparameters are referenced to a specific voltage level that specifies when the device outputis no longer driving ^tHZ(DQS) and ^tHZ(DQ), or begins driving ^tLZ(DQS) and ^tLZ(DQS) and ^tLZ(DQS). This section shows a method to calculate the point when the device is no longerdriving ^tHZ(DQS) and ^tHZ(DQS) and ^tHZ(DQS) and ^tLZ(DQS), or begins driving ^tLZ(DQS) and ^tLZ(DQS), or begins driving ^tLZ(DQS) and ^tLZ(DQ), or begins driving ^tLZ(DQS) and ^tLZ(DQ), by measuring the signal at two different voltages. The actual voltage measurement points arenot critical as long as the calculation is consistent. The parameters ^tLZ(DQS), ^tLZ(DQ), ^tHZ(DQS), and ^tHZ(DQS) are defined as single ended.

^tLZ(DQS) and ^tHZ(DQS) Calculation for ATE (Automatic Test Equipment)

Figure 4-162: tLZ(DQS) Method for Calculating Transitions and Endpoint

CK_t – CK_c crossing at the second CAS-2 of READ command

Notes:

- 1. Conditions for calibration: Pull down driver R_{ON} = 40 ohms, V_{OH} = $V_{DDQ}/3$.
- 2.Termination condition for DQS_t and DQS_C = 50 ohms to V_{SSQ} .
- 3.The V_{OH} level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances.Use the actual V_{OH} valuefor ¹HZ and ¹LZ measurements.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕸 CUN

Notes:

- 1. Conditions for calibration: Pull down driver R_{ON} = 40 ohms, V_{OH} = $V_{DDQ}/3$.
- 2.Termination condition for DQS_t and DQS_C = 50 ohms to V_{SSQ} .
- 3. The V_{OH} level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual V_{OH} valuefor t HZ and t LZ measurements.

Table 4-208: Reference Voltage for ^tLZ(DQS), ^tHZ(DQS) Timing Measurements

Measured Parameter	Measured Parameter Symbol	Vsw1	Vsw2	Unit	
DQS_c Low-Z time	tl Z(DOS)	0.4 × Vou	0.6 × Vou	V	
from CK_t, CK_c		0.1 001	0.0 001		
DQS_c High-Z time				v	
from CK_t, CK_c		0.4 A VOH	0.0 4 VOH		

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

^tLZ(DQ) and ^tHZ(DQ) Calculation for ATE (Automatic Test Equipment)

Figure 4-164: ^tLZ(DQ) Method for Calculating Transitions and Endpoint

XIN 🕱 CUN

CK_t – CK_c crossing at the second CAS-2 of READ command

Notes:

- 1. Conditions for calibration: Pull down driver R_{ON} = 40 ohms, V_{OH} = $V_{DDQ}/3$.
- 2.Termination condition for DQ and DMI = 50 ohms to V_{SSQ} .
- 3. The V_{OH} level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual V_{OH} value for ${}^{t}HZ$ and ${}^{t}LZ$ measurements.

Figure 4-165: ^tHZ(DQ) Method for Calculating Transitions and Endpoint

CK_t – CK_c crossing at the second CAS-2 of READ command

Notes:

1. Conditions for calibration: Pull down driver R_{ON} = 40 ohms, V_{OH} = $V_{DDQ}/3$.

2.Termination condition for DQ and DMI = 50 ohms to V_{SSQ} .

3. The V_{OH} level depends on MR22 OP[2:0] and MR3 OP[0] settings as well as device tolerances. Use the actual V_{OH} valuefor ${}^{t}HZ$ and ${}^{t}LZ$ measurements.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

|--|

Measured Parameter	Measured Parameter Symbol	Vsw1	Vsw2	Unit	
DQ Low-Z time	^t l Z(DQ)	0.4 × Vон	0.6 × Vон		
from CK_t, CK_c		0.1 0 001	0.0	V	
DQ High-Z time	^t HZ(DO)			v	
from CK_t, CK_c	TIZ(DQ)	0.4 × VOH	0.0 × VOH		

4.60 VREF Specifications Internal VREF(CA) Specifications

The device's internal $V_{REF(CA)}$ specification parameters are operating voltage range, stepsize, V_{REF} step time, V_{REF} full-range step time, and V_{REF} valid level.

The voltage operating range specifies the minimum required V_{REF} setting range for LPDDR4 devices. The minimum range is defined by $V_{REF,max}$ and $V_{REF,min}$.

Table 4-210: Internal VREF(CA) Specifications

Symbol	Parameter	Min	Тур	Мах	Unit	Notes	
	V _{REF(CA)} range-0 MAX			20%	Vana	1 11	
VREF(CA),max_r0 VREF(CA),min_r0 VREF(CA),max_r1 VREF(CA),min_r1	operat-ing point	_	_	30%	V DD2	1, 11	
Vassion	V REF(CA) range-0 MIN	10%			Vana	1 11	
V REF(CA),min_r0	operat-ing point	10 %	_	_	V DD2	1, 11	
V/P=row	V _{REF(CA)} range-1 MAX			120/	Vara	1 11	
VR _{EF} (CA),max_r1	operat-ing point	_	_	42 %	V DD2	1, 11	
VREF(CA),min_r1	V REF(CA) range-1 MIN	2204	_	_	V dd2	1, 11	
	operat-ing point	22.70					
VREF(CA),step	V REF(CA) step size	0.30%	0.40%	0.50%	V dd2	2	
N/	$V_{REF(CA)}$ set tolerance	-1.00%	0.00%	1%	V DD2	3, 4, 6	
$V_{REF(CA),set_tol}$	V REF(CA) set tolerance	-0.10%	0.00%	0.10%	V DD2	3, 5, 7	
^t VREF_TIME-SHORT		-	-	100	ns	8	
^t VREF_TIME-MIDDLE		_	_	200	ns	12	
^t VREF_TIME-LONG	V REF(CA) Step time	_	_	250	ns	9	
^t VREF_time_weak		-	-	1	ms	13, 14	
V _{REF(CA)_val_tol}	V _{REF(CA)} valid tolerance	-0.10%	0.00%	0.10%	V _{DD2}	10	

Notes:

1. $V_{\text{REF(CA)}}$ DC voltage referenced to $V_{\text{DD2(DC)}}$.

 $2.V_{\text{REF}(\text{CA})}$ step size increment/decrement range. $V_{\text{REF}(\text{CA})}$ at DC level.

3.V_{REF(CA),new} = V_{REF(CA),old} + n × V_{REF(CA),step}; n = number of steps; if increment, use "+"; ifdecrement, use "-".

4. The minimum value of $V_{\text{REF(CA)}}$ setting tolerance = $V_{\text{REF(CA),new}}$ - 1.0% × V_{DD2} . The maximum value of $V_{\text{REF(CA)}}$

setting tolerance = $V_{\text{REF(CA),new}}$ + 1.0% × V_{DD2}. For n > 4.

5. The minimum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ - 0.10% × V_{DD2} . The maximum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ + 0.10% × V_{DD2} . Forn < 4.

6.Measured by recording the minimum and maximum values of the $V_{REF(CA)}$ output overthe range, drawing a straight linebetween those points and comparing all other $V_{REF(CA)}$ output settings to that line.

7.Measured by recording the minimum and maximum values of the $V_{\text{REF(CA)}}$ output acrossfour consecutive steps (n = 4), drawing a straight line between those points and comparingall other $V_{\text{REF(CA)}}$ output settings to that line.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

8. Time from MRW command to increment or decrement one step size for $V_{\mathsf{REF}(\mathsf{CA})}$.

- 9.Time from MRW command to increment or decrement VREF,min to VREF,max or V_{REF,max} toV_{REF,min} change acrossthe V_{REF(CA)} range in V_{REF} voltage.
- 10.Only applicable for DRAM component level test/characterization purposes. Not applicable for normal mode of operation.V_{REF} valid is to qualify the step times which will becharacterized at the component level.
- 11.DRAM range-0 or range-1 set by MR12 OP[6].
- 12. Time from MRW command to increment or decrement more than one step size up to afull range of V_{REF} voltage within thesame $V_{REF(CA)}$ range.
- 13.Applies when VRCG high current mode is not enabled, specified by MR13 [OP3] = 0b.
- 14.^tV_{REF}_time_weak covers all V_{REF(CA)} range and value change conditions are applied to^tV_{REF}_TIME-SHORT/MIDDLE/LONG.

Internal VREF(DQ) Specifications

The device's internal VREF(DQ) specification parameters are operating voltage range, stepsize, VREF step tolerance, VREF step time and VREF valid level.

The voltage operating range specifies the minimum required VREF setting range for LPDDR4 devices. The minimum range is defined by VREF, max and VREF, min.

Table 4-211: Internal VREF(DQ) Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{REF(DQ),max_r0}	V _{REF} MAX operating point Range-0	_	_	30%	V _{DDQ}	1, 11
VREF(DQ),min_r0	VREF MIN operating point Range-0	10%	_		Vddq	1, 11
VREF(DQ),max_r1	VREF MAX operating point Range-1	_	_	42%	Vddq	1, 11
V _{REF(DQ),min_r1}	V _{REF} MIN operating point Range-1	22%	_	-	V _{DDQ}	1, 11
VREF(DQ),step	V _{REF(DQ)} step size	0.30%	0.40%	0.50%	Vddq	2
		-1.00%	0.00%	1.00%	Vddq	3, 4, 6
V REF(DQ),set_tol	V REF(DQ) Set tolerance	-0.10%	0.00%	0.10%	V _{DDQ}	3, 5, 7
^t V _{REF} _TIME-SHORT		_	_	100	ns	8
^t V _{REF} _TIME-MIDDLE		_	_	200	ns	12
^t V _{REF} _TIME-LONG		_	_	250	ns	9
^t V _{REF_time_weak}		_	_	1	ms	13, 14
V _{REF(DQ),val_tol}	V REF(DQ) valid tolerance	-0.10%	0.00%	0.10%	VDDQ	10

Notes:

- 1. $V_{\text{REF}(DQ)}$ DC voltage referenced to $V_{\text{DDQ}(DC)}$.
- 2. V $_{\text{REF}(\text{DQ})}$ step size increment/decrement range. V $_{\text{REF}(\text{DQ})}$ at DC level.
- 3. V_{REF(DQ),new} = V_{REF(DQ),old} + n × V_{REF(DQ),step}; n = number of steps; if increment, use "+"; ifdecrement, use "-".
- 4. The minimum value of V_{REF(DQ)} setting tolerance = $V_{REF(DQ),new}$ 1.0% × V_{DDQ}. The maximum value of V_{REF(DQ)} setting tolerance = $V_{REF(DQ),new}$ + 1.0% × V_{DDQ}. For n > 4.
- 5. The minimum value of $V_{\text{REF}(DQ)}$ setting tolerance = $V_{\text{REF}(DQ),\text{new}}$ 0.10% × V_{DDQ} . The maximum value of $V_{\text{REF}(DQ)}$ setting tolerance = $V_{\text{REF}(DQ),\text{new}}$ + 0.10% × V_{DDQ} . For n < 4.
- 6. Measured by recording the minimum and maximum values of the V_{REF(DQ)} output overthe range, drawing a straight linebetween those points and comparing all otherV_{REF(DQ)} output settings to that line.
- 7. Measured by recording the minimum and maximum values of the $V_{\text{REF}(DQ)}$ output acrossfour consecutive steps (n = 4), drawing a straight line between those points and comparingall other $V_{\text{REF}(DQ)}$ output settings to that line.
- 8. Time from MRW command to increment or decrement one step size for $V_{\mathsf{REF}(\mathsf{DQ})}$.
- 9. Time from MRW command to increment or decrement V_{REF,min} to V_{REF,max} or V_{REF,max} toV_{REF,min} change across the V_{REF(DQ)}Range in V_{REF(DQ)} Voltage.
- 10. Only applicable for DRAM component level test/characterization purposes. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will becharacterized at the component level.
- 11. DRAM range-0 or range-1 set by MR14 OP[6].

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

- 12. Time from MRW command to increment or decrement more than one step size up to afull range of V_{REF} voltage within thesame V_{REF(DQ)} range.
- 13. Applies when VRCG high current mode is not enabled, specified by MR13 [OP3] = 0.
- 14. $^{t}V_{REF_time_weak}$ covers all $V_{REF(DQ)}$ Range and Value change conditions are applied to $^{t}V_{REF}$ _TIME-SHOR/MIDDLE/LONG.

4.61 Command Definitions and Timing Diagrams Pull Up/Pull Down Driver Characteristics and Calibration

Table 4-212: Pull-Down Driver Characteristics – ZQ Calibration

XIN 🕱 CUN

Ronpd,nom	Register	Min	Nom	Мах	Unit
40 ohms	Ron40PD	0.9	1	1.1	Rzq/6
48 ohms	Ron48PD	0.9	1	1.1	Rzq/5
60 ohms	Ron60PD	0.9	1	1.1	Rzq/4
80 ohms	Ron80PD	0.9	1	1.1	Rzq/3
120 ohms	RON120PD	0.9	1	1.1	Rzq/2
240 ohms	Ron240PD	0.9	1	1.1	Rzq/1

Note:

1. All value are after ZQ calibration. Without ZQ calibration, R_{ONPD} values are $\pm 30\%.$

Table 4-213: Pull-Up Characteristics – ZQ Calibration

VOHPU, nom	V _{он} ,nom	Min	Nom	Мах	Unit
V _{DDQ} /2.5	440	0.9	1	1.1	V _{OH} ,nom
V _{DDQ} /3	367	0.9	1	1.1	V _{OH} ,nom

Notes:

1. All value are after ZQ calibration. Without ZQ calibration, R_{ONPD} values are ±30%.

2. V_{OH},nom (mV) values are based on a nominal V_{DDQ} = 1.1V.

Table 4-214: Terminated Valid Calibration Points

Mauri	ODT Value							
V OHPU	240	120	80	60	48	40		
V _{DDQ} /2.5	Valid	Valid	Valid	DNU	DNU	DNU		
V _{DDQ} /3	Valid	Valid	Valid	Valid	Valid	Valid		

Notes:

1. Once the output is calibrated for a given V_{OH(nom)} calibration point, the ODT value maybe changed without recalibration.

2. If the V_{OH(nom)} calibration point is changed, then recalibration is required.

3. DNU = Do not use.

On-Die Termination for the Command/Address Bus

The on-die termination (ODT) feature allows the device to turn on/off termination resistancefor CK_t, CK_c, CS, and CA[5:0] signals without the ODT control pin. The ODT feature is designed to improve signal integrity of the memory channel by allowing the DRAM controller to turn on and off termination resistance for any target DRAM devices via the mode register setting.

A simple functional representation of the DRAM ODT feature is shown below.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-166: ODT for CA

XIN 🕱 CUN

ODT Mode Register and ODT State Table

ODT termination values are set and enabled via MR11. The CA bus (CK_t, CK_c, CS,CA[5:0]) ODT resistance values are set by MR11 OP[6:4]. The default state for the CA isODT disabled.

ODT is applied on the CA bus to the CK_t, CK_c, CS, and CA signals. The CA ODT of thedevice is designed to enable one rank to terminate the entire command bus in a multiranksystem, so only one termination load will be present even if multiple devices aresharing the command signals. For this reason, CA ODT remains on, even when the deviceis in the power-down or self refresh power-down state.

The die has a bond pad (ODT_CA) for multirank operations. When the ODT_CA pad isLOW, the die will not terminate the CA bus regardless of the state of the mode registerCA ODT bits (MR11 OP[6:4]). If, however, the ODT_CA bond pad is HIGH and the moderegister CA ODT bits are enabled, the die will terminate the CA bus with the ODT valuesfound in MR11 OP[6:4]. In a multirank system, the terminating rank should be trainedfirst, followed by the non-terminating rank(s).

CA	ODT_CA	ODTD-CAMR2	ODTE-CK	ODTE-CS	ODT State	ODT State	ODT State
ODTMR11[6:4	Bond Pad	2 OP[5]	MR22 OP[3]	MR22 OP[4]	for CA	for CK	for CS
Disabled ¹	Valid ²	Valid ³	Valid ³	Valid ³	Off	Off	Off
Valid ³	0	Valid ³	0	0	Off	Off	Off
Valid ³	0	Valid ³	0	1	Off	Off	On
Valid ³	0	Valid ³	1	0	Off	On	Off
Valid ³	0	Valid ³	1	1	Off	On	On
Valid ³	1	0	Valid ³	Valid ³	On	On	On
Valid ³	1	1	Valid ³	Valid ³	Off	On	On

Table 4-215: Command Bus ODT State

Notes:

1. Default value.

2. Valid = H or L (a defined logic level)

3. Valid = 0 or 1.

4. The state of ODT_CA is not changed when the device enters power-down mode. Thismaintains termination for alternateranks in multirank systems.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

ODT Mode Register and ODT Characteristics

Table 4-216: ODT DC Electrical Characteristics for Command/Address Bus – up to 3200 Mbps

 $R_{ZQ} = 240\Omega \pm 1\%$ over entire operating range after calibration

MR11 OP[6:4]	RTT	Vout	Min	Nom	Max	Unit	Notes
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
001b	240Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /1	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
010b	120Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /2	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
011b	80Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /3	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
100b	60Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /4	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
101b	48Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	Rzq/5	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
110b	40Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	Rzq/6	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.2		
Mismatch, CA clock g	-CA within roup	0.33 × V _{DD2}	_	_	2	%	1, 2, 3

Notes:

1. The tolerance limits are specified after calibration with stable temperature and voltage. To understand the behavior of thetolerance limits when voltage or temperaturechanges after calibration, see the section on voltage and temperaturesensitivity.

2. Pull-down ODT resistors are recommended to be calibrated at $0.33 \times V_{DD2}$. Other calibrationpoints may be required toachieve the linearity specification shown above, forexample, calibration at $0.5 \times V_{DD2}$ and $0.1 \times V_{DD2}$.

3. CA to CA mismatch within clock group variation for a given component including CK_t,CK_c ,and CS (characterized).

CA-to-CA mismatch = $\frac{R_{ODT} (MAX) - R_{ODT} (MIN)}{R_{ODT} (AVG)}$
8GB eMMC+ 8Gb LPDDR4 SDRAM

XIN 🕸 CUN

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-217: ODT DC Electrical Characteristics for Command/Address Bus – Beyond 3200 Mbps

R_{ZQ} = 240 Ω ±1% over entire operating range after calibration

MR11 OP[6:4]	RTT	Vout	Min	Nom	Max	Unit	Notes
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
001b	240Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /1	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
010b	120Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /2	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
011b	80Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /3	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
100b	60Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	R _{ZQ} /4	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
101b	48Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	Rzq/5	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DD2}$	0.8	1	1.1		
110b	40Ω	$V_{OM(DC)} = 0.33 \times V_{DD2}$	0.9	1	1.1	Rzq/6	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DD2}$	0.9	1	1.3		
Mismatch, CA -	CA within	0.22 x \/			2	0/	1 2 2
clock gro	ир	0.55 × VDD2	_	_	2	/0	1, 2, 3

Notes:

1. The tolerance limits are specified after calibration with stable temperature and voltage. To understand the behavior of thetolerance limits when voltage or temperaturechanges after calibration, see the section on voltage and temperaturesensitivity.

 Pull-down ODT resistors are recommended to be calibrated at 0.33 × V_{DD2}. Other calibrationpoints may be required toachieve the linearity specification shown above, e.g.calibration at 0.5 × V_{DD2} and 0.1 × V_{DD2}.

3. CA to CA mismatch within clock group variation for a given component including CK_t,CK_c ,and CS (characterized).

CA-to-CA mismatch = $\frac{R_{ODT} (MAX) - R_{ODT} (MIN)}{R_{ODT} (AVG)}$

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

DQ On-Die Termination

On-die termination (ODT) is a feature that allows the device to turn on/off terminationresistance for each DQ, DQS, and DMI signal without the ODT control pin. The ODTfeature is designed to improve signal integrity of the memory channel by allowing theDRAM controller to turn on and off termination resistance for any target DRAM devices during WRITE or MASK WRITE operation.

The ODT feature is off and cannot be supported in power-down and self refresh modes.

The switch is enabled by the internal ODT control logic, which uses the WRITE-1 orMASK WRITE-1 command and other mode register control information. The value ofRTT is determined by the MR bits.

 $R_{\rm TT} = \frac{V_{\rm OUT}}{\left|I_{\rm OUT}\right|}$

Figure 167: Functional Representation of DQ ODT

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Table 4-218: ODT DC Electrical Characteristics for DQ Bus- up to 3200 Mbps

$R_{ZQ} = 240\Omega \pm 1\%$ over	entire operating	range after calibration
-----------------------------------	------------------	-------------------------

MR11 OP[2:0]	RTT	Vout	Vout Min Nom Ma		Max	Unit	Notes
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
001b	240Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /1	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
010b	120Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /2	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
011b	800Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /3	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.2		
	600Ω	$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		1, 2
100b		$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /4	
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
101b	48Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	Rzq/5	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.2		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
110b	40Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	Rzq/6	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.2		
Mismatch error with-in a c	, DQ-to-DQ hannel	0.33 × V _{DDQ}	_	_	2	%	1, 2, 3

Notes:

1. The ODT tolerance limits are specified after calibration with stable temperature andvoltage. To understand the behavior of the tolerance limits when voltage or temperaturechanges after calibration, see the following section on voltage and temperatures ensitivity.

2. Pull-down ODT resistors are recommended to be calibrated at $0.33 \times V_{DDQ}$. Other calibrationpoints may be required toachieve the linearity specification shown above, (forexample, calibration at $0.5 \times V_{DDQ}$ and $-0.1 \times V_{DDQ}$.

3. DQ-to-DQ mismatch within byte variation for a given component, including DQS (characterized).

DQ-to-DQ mismatch= $\frac{R_{ODT} (MAX) - R_{ODT} (MIN)}{R_{ODT} (AVG)}$

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-219: ODT DC Electrical Characteristics for DQ Bus – Beyond 3200 Mbps

$R_{ZQ} = 240\Omega \pm 1\%$ ove	entire o	perating ran	ge after	calibration
----------------------------------	----------	--------------	----------	-------------

XIN 🕸 CUN

MR11	RTT	Vout	Min	Nom	Max	Unit	Notes
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
001b	240Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /1	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
010b	120Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /2	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
011b	2008	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /3	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
100b	600Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /4	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
101b	48Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	Rzq/5	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.3		
		$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.8	1	1.1		
110b	40Ω	$V_{OM(DC)} = 0.33 \times V_{DDQ}$	0.9	1	1.1	Rzq/6	1, 2
		$V_{OH(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.3		
Mismatch err with-in a	or, DQ-to-DQ channel	0.33 × V _{DDQ}	-	-	2	%	1, 2, 3

Notes:

1. The ODT tolerance limits are specified after calibration with stable temperature andvoltage. To understand the behavior of the tolerance limits when voltage or temperaturechanges after calibration, see the following section on voltage and temperatures ensitivity.

2. Pull-down ODT resistors are recommended to be calibrated at $0.33 \times V_{DDQ}$. Other calibrationpoints may be required toachieve the linearity specification shown above, forexample, calibration at $0.5 \times V_{DDQ}$ and $-0.1 \times V_{DDQ}$.

3. DQ-to-DQ mismatch within byte variation for a given component, including DQS (characterized).

DQ-to-DQ mismatch= $\frac{R_{oDT} (MAX) - R_{oDT} (MIN)}{R_{oDT} (AVG)}$

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Output Driver and Termination Register Temperature and Voltage Sensitivity

When temperature and/or voltage change after calibration, the tolerance limits are widenaccording to the tables below.

Resistor	Definition Point	Min	Мах	Unit	Notes
R _{ONPD}	$0.33 \times V_{DDQ}$	90 - ($dR_{ONdT} \cdot \Delta T $) - ($dR_{ONdV} \cdot \Delta V $)	110 + (dR _{ONdT} · $ \Delta T $) + (dR _{ONdV} · $ \Delta V $)	%	1, 2
VOHPU	$0.33 \times V_{DDQ}$	90 - (dV _{OHdT} · Δ T]) - (dV _{OHdV} · ΔV)	110 + (dV _{OHdT} · ΔT) + (dV _{OHdV} · ΔV)		1, 2, 5
R _{TT(I/O)}	$0.33 \times V_{DDQ}$	90 - (dR _{ONdT} · ΔT]) - (dR _{ONdV} · ΔV])	110 + (dR _{ONdT} · $ \Delta T $) + (dR _{ONdV} · $ \Delta V $)		1, 2, 3
R _{TT(IN)}	$0.33 \times V_{DD2}$	90 - (dR _{ONdT} · ΔT]) - (dR _{ONdV} · ΔV])	110 + (dR _{ONdT} · ΔT]) + (dR _{ONdV} · ΔV])		1, 2, 4

Table 4-220: Output Driver and Termination Register Sensitivity Definition

Notes:

1. \triangle T = T - T(@calibration), \triangle T = V - V(@calibration)

XIN 🕱 CUN

- 2. dR_{ONdT}, dR_{ONdV}, dV_{OHdV}, dR_{TTdV}, and dR_{TTdT} are not subject to production testbut are verified by designand characterization.
- 3. This parameter applies to input/output pin such as DQS, DQ, and DMI.
- 4. This parameter applies to input pin such as CK, CA, and CS.
- 5. Refer to Pull-up/Pull-down Driver Characteristics for $V_{\mbox{\tiny OHPU}}.$

Table 4-221: Output Driver and Termination Register Temperature and Voltage Sensitivity

Symbol	Parameter	Min	Мах	Unit
dRonat	Ron temperature sensitivity	0	0.75	%/°C
dRondv	R _{ON} voltage sensitivity	0	0.2	%/mV
dV _{OHdT}	V _{OH} temperature sensitivity	0	0.75	%/°C
dV _{OHdV}	ониv Vон voltage sensitivity		0.35	%/mV
dR _{TTdT} R _{TT} temperature sensitivity		0	0.75	%/°C
dR _{TTdV}	R _{TT} voltage sensitivity	0	0.2	%/mV

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🖾 CUN

4.62AC and DC Operating Conditions

Recommended DC Operating Conditions

Operation or timing that is not specified is illegal. To ensure proper operation, the devicemust be initialized properly.

Symbol	Min	Тур	Max	DRAM	Unit	Notes
Vdd1	1.7	1.8	1.95	Core 1 power	V	1, 2
V _{DD2}	1.06	1.1	1.17	Core 2 power/Input buffer power	V	1, 2, 3
Vddq	1.06	1.1	1.17	I/O buffer power	V	2, 3

Table 4-222: Recommended DC Operating Conditions

Notes:

1. V_{DD1} uses significantly less power than $V_{\text{DD2}}.$

2. The voltage range is for DC voltage only. DC voltage is the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball.

4.63 Output Slew Rate and Overshoot/Undershoot specifications Single-Ended Output Slew Rate

Table 4-223: Single-Ended Output Slew Rate

Note 1-5 applies to entire table

Parameter	Symbol	Vá	alue	
Falameter	Symbol	Min	Max	Units
Single-ended output slew rate (V _{OH} = V _{DDQ} /3)	SRQse	3.5	9.0	V/ns
Output slew rate matching ratio (rise to fall)	_	0.8	1.2	_

Notes:

1. SR = Slew rate; Q = Query output; se = Single-ended signal

2. Measured with output reference load.

- 3. The ratio of pull-up to pull-down slew rate is specified for the same temperature andvoltage, over the entire temperature andvoltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due toprocessvariation.
- 4. The output slew rate for falling and rising edges is defined and measured between

 $V_{OL(AC)} = 0.2 \times V_{OH(DC)}$ and $V_{OH(AC)} = 0.8 \times V_{OH(DC)}$.

5. Slew rates are measured under average SSO conditions with 50% of the DQ signals perdata byte switching.

^{3.} The voltage noise tolerance from DC to 20 MHz exceeding a peak-to-peak tolerance of 45mV at the DRAM ball is not included in the TdIVW.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 168: Single-Ended Output Slew Rate Definition

XIN 🕱 CUN

Differential Output Slew Rate Table 4-224: Differential Output Slew Rate

Note 1-4 applies to entire table

Paramatar	Symbol	Va	alue	
raiameter	Symbol	Min	Мах	Units
Differential output slew rate ($V_{OH} = V_{DDQ}/3$)	SRQdiff	7	18	V/ns

Notes:

1. SR = Slew rate; Q = Query output; se = Differential signal

2. Measured with output reference load.

3. The output slew rate for falling and rising edges is defined and measured between

 $V_{OL(AC)} = -0.8 \times V_{OH(DC)}$ and $V_{OH(AC)} = 0.8 \times V_{OH(DC)}$.

4. Slew rates are measured under average SSO conditions with 50% of the DQ signals perdata byte switching.

Figure 4-169: Differential Output Slew Rate Definition

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

4.64LVSTL I/O System

LVSTL I/O cells are comprised of a driver pull-up and pull-down and a terminator.

Figure 170: Single-Ended Output Slew Rate Definition

To ensure that the target impedance is achieved, calibrate the LVSTL I/O cell as following example:

- 1. Calibrate the pull-down device against a 240 ohm resistor to V_{DDO} via the ZQ pin.
- · Set strength control to minimum setting
- Increase drive strength until comparator detects data bit is less than $V_{\rm DDO}/3$
- NMOS pull-down device is calibrated to 120 ohms
- 2. Calibrate the pull-up device against the calibrated pull-down device.
- + Set V_{OH} target and NMOS controller ODT replica via MRS (V_{OH} can be automatically controlled by ODT MRS)
- Set strength control to minimum setting
- Increase drive strength until comparator detects data bit is greater than $V_{\rm OH}$ target
- + NMOS pull-up device is calibrated to $V_{\mbox{\scriptsize OH}}$ target

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-171: Pull-Up Calibration

4.65WRITE and MASKED WRITE Operation DQS Control (WDQS Control)

The device supports WRITE and MASKED WRITE operations with the following DQScontrols. Before and after WRITE and MASKED WRITE operations, DQS_t, and DQS_care required to have sufficient voltage gap to make sure the write buffers operating normally without any risk of meta-stability.

The device is supported by either of the two WDQS control modes below.

- Mode 1: Read based control
- Mode 2: WDQS_on / WDQS_off definition based control

Regardless of ODT enable/disable, WDQS related timing described here does not allowany change of existing command timing constraints for all READ/WRITE operations. Incase of any conflict or ambiguity on the command timing constraints caused by thespecification here, the specification defined in the Timing Constraints for TrainingCommands table should have higher priority than WDQS control requirements.

In order to prevent write preamble related failure, it is strongly recommended to support either of the two WDQS controls to the device.

WDQS Control Mode 1 – Read-Based Control

The device needs to be guaranteed the differential WDQS, but the differential WDQScan be controlled as described below. WDQS control requirements here can be ignoredwhile differential read DQS is operated or while DQS hands over from read to write orvice versa.

- 1. When WRITE/MASKED WRITE command is issued, SoC makes the transitionfrom driving DQS_c HIGH todriving differential DQS_t/DQS_c, followed by normaldifferential burst on DQS pins.
- 2. At the end of post amble of WRITE/MASKED WRITE burst, SoC resumes drivingDQS_c HIGH through thesubsequent states except for DQS toggling and DQSturn around time of WT-RD and RD-WT as long as CKE isHIGH.
- 3. When CKE is LOW, the state of DQS_t/DQS_c is allowed to be "Don't Care."

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

WDQS Control Mode 2 – WDQS_On/Off

After WRITE/MASKED WRITE command is issued, DQS_t and DQS_c required to bedifferential from WDQS_on, and DQS_t and DQS_c can be "Don't Care" status from WDQS_off of WRITE/MASKED WRITE command. When ODT is enabled, WDQS_onand WDQS_off timing is located in the middle of the operations. When host disablesODT, WDQS_on and WDQS_off constraints conflict with tRTW. The timing does notconflict when ODT is enabled because WDQS_on and WDQS_off timing is covered inODTLon and ODTLoff. However, regardless of ODT on/off, WDQS_on/off timing belowdoes not change any command timing constraints for all read and write operations. Inorder to prevent the conflict, WDQS_on/off requirement can be ignored whereWDQS_on/off timing is overlapped with read operation period including READ burstperiod and tRPST or overlapped with turn-around time (RD-WT or WT-RD). In addition, the period during DQS toggling caused by read and write can be counted as WDQS_on/off.

Parameters

- WDQS_on: The maximum delay from WRITE/MASKED WRITE command to differentialDQS_t and DQS_c
- WDQS_off: The minimum delay for DQS_t and DQS_c differential input after the lastWRITE/MASKED WRITEcommand
- WDQS_Exception: The period where WDQS_on and WDQS_off timing is overlapped with READ operation or with DQS turn around (RD-WT, WT-RD)
- WDQS_Exception @ ODT disable = MAX(WL-WDQS_on + ^tDQSTA ^tWPRE n ^tCK,0 ^tCK) where RD to WTcommand gap = ^tRTW(MIN)@ODT disable + n ^tCK
- WDQS_Exception @ ODT enable = ^tDQSTA

WR Late	WRITE Latency		nRTP	WDQ (M	WDQS_On (Max)		S_Off in)	Lower Frequency	Upper Frequency
Set A	Set B			Set A	Set B	Set A	Set B	Limit (>)	Limit (≤)
4	4	6	8	0	0	15	15	10	266
6	8	10	8	0	0	18	20	266	533
8	12	16	8	0	6	21	25	533	800
10	18	20	8	4	12	24	32	800	1066
12	22	24	10	4	14	27	37	1066	1333
14	26	30	12	6	18	30	42	1333	1600
16	30	34	14	6	20	33	47	1600	1866
18	34	40	16	8	24	36	52	1866	2133

Table 4-225: Differential Output Slew Rate

Notes:

1. WDQS_on/off requirement can be ignored when WDQS_on/off timing is overlapped with READ operation period including READ burst period and ^tRPST or overlapped with turn-around time (RD-WT or WT-RD).

2. DQS toggling period caused by read and write can be counted as WDQS_on/off.

XIN 🖄 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 4-226: WDQS_On/WDQS_Off Allowable Variation Range

	Min	Мах	Unit
WDQS_on	-0.25	0.25	^t CK(avg)
WDQS_off	-0.25	0.25	^t CK(avg)

Table 4-227: DQS Turn-Around Parameter

Parameter	Description	Value	Unit	Note
^t DQSTA	Turn-around time RDQS to WDQS for WDQS control case	TBD	_	1

Note:

1. ^tDQSTA is only applied to WDQS_exception case when WDQS Control. Except for WDQSControl, ^tDQSTA can be ignored.

Figure 4-173: Burst WRITE Operation τ4 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta7 Ta8 Ta9 Ta10 Ta11 Ta12 Ta13 Ta14 Ta15 Ta16 Ta17 Ta18 Ta19 Ta20 Ta21 то т2 Т3 Ta6 CK_c CK_t CS CA BL CΔ DES DES Command (WRITE-1 CAS-2 DES WDQS_off t DQSS(MIN) ^tWPRE WDOS on DQS_c DQS_t)) DQ DOSS(MAX) ^tWPRE DOS o DQS_t)) DQ OD TLon tODTon(MAX) ^tODTon(MIN) DRAM R_{TT} ODT High-Z Translor ODT on Transition ODT High-Z ODTL off ^tODToff(MIN) tODToff(MAX)

Notes:

- 1. BL=16, Write postamble = 0.5nCK, DQ/DQS: V_{SSQ} termination.
- 2. DI n = data-in to column n.
- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.
- 4. DRAM RTT is only applied when ODT is enabled (MR11 OP[2:0] is not 000b).

Don't Care

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-174: Burst READ Followed by Burst WRITE or Burst MASKED WRITE (ODT Disable)

Notes:

- 1. BL = 16, Read preamble = Toggle, Read postamble = 0.5nCK, Write preamble = 2nCK, Write postamble = 0.5nCK.
- 2. DO n = data-out from column n, DI n = data-in to column n.

XIN 🕱 CUN

- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.
- 4. WDQS_on and WDQS_off requirement can be ignored where WDQS_on/off timing isoverlapped with READ operationperiod including READ burst period and tRPST or overlapped with turn-around time (RD-WT or WT-RD).

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 4-175: Burst READ Followed by Burst WRITE or Burst MASKED WRITE (ODT Enable)

Notes:

- 1. BL = 16, Read preamble = Toggle, Read postamble = 0.5nCK, Write preamble = 2nCK,Write postamble = 0.5nCK,DQ/DQS:V_{SSQ} termination.
- 2. DO n = data-out from column n, DI n = data-in to column n.

XIN 🕱 CUN

- 3. DES commands are shown for ease of illustration; other commands may be valid atthese times.
- 4. WDQS_on and WDQS_off requirement can be ignored where WDQS_on/off timing isoverlapped with READ operationperiod including READ burst period and tRPST or overlapped with turn-around time (RD-WT or WT-RD).

XCBL4NVAM-QSNTF 8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

5. eMMC

5.1 Technical Notes

HS400 Interface

Support HS400 DDR interface timing mode to achieve a bus speed of 400 MB/s at 200MHz clock frequency with 8bit bus width only. At this mode, the host may need to have an adjustable sampling point to reliably receive the incoming data, due to the speed. Please refer to JESD84-B50-1 standard for additional information.

Partition Management

The device initially consists of two Boot partitions, RPMB(Replay Protected Memory Block) partition and User Data Area. Both Boot and RPMB area have fixed size of area and can't be adjusted. Further information for re-partitioning these areas will be provided with additional application note and please contact to us.

User Density

Boot Area Partition and RPMB Area Partition

The device has fixed size of Boot and RPMB area.

Boot partition size is calculated as (128KB * BOOT_SIZE_MULT) The size of Boot Area Partition 1 and 2 cannot be set independently. It is set as same value.

RPMB partition size is calculated as (128KB * RPMB_SIZE_MULT). In RPMB partition, CMD 0, 6, 8, 12, 13, 15, 18, 23, 25 are admitted.

Access Size of RPMB partition is defined as the below:

Table 5-1 Setting sequence of Boot Area Partition size and RPMB Area Partition size

REL_WR_SEC_C	Description
REL_WR_SEC_C = 1	Access sizes 256B and 512B supported to RPMB partition
REL_WR_SEC_C > 1	Access sizes up to REL_WR_SEC_C * 512B supported to RPMB partition with 256B granularity

Any undefined set of parameters or sequence of commands results in failure access. If the failure is in data programming case, the data is not programmed. And if the failure occurs in data read case, the read data is '0x00'.

Table 5-2 Capacity according to partition

Device	Boot partition 1 [KB]	Boot partition 2 [KB]	RPMB[KB]
8GB	4,096	4,096	4,096

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Enhanced Partition (Area)

Xincun 8GB eMMC applies SLC Mode for Enhanced User Data Area and it leads to occupying double size of original set up size if master set some area of User Data Area as enhanced user area. For example, if master set 1MB as enhanced mode, then, total 2MB of user data area is used for it. Max Enhanced user Data Area follows below formula of JESD84-B50-1.

Max Enhanced User Data Area size is defined as (MAX_ENH_SIZE_MULT x HC_WP_GRP_SIZE x HC_ERASE_GRP_SIZE x 512Kbytes)

Table 5-3 Maximum Enhanced Partition Size

Device	LBA [Hex]	LBA [Dec.]	Max. Enhanced Partition Size
8GB	0x1D20	7,456	3,817,472 Bytes

User Density

As mentioned in Enhanced Partition (Area) section, total User Density depends on partition type to be set. Xincun 8GB applies SLC mode for enhanced user area and so, assigning any size for it occupies double of that value assigned. For example, assigning 64MB in the SLC mode takes 128MB of capacity in MLC.

Table 5-4 User Density Size

Device	LBA [Hex]	LBA [Dec.]	User Partition Size
8GB	0xE90000	15,269,888	7,818,182,656 Bytes

Boot operation

Device supports not only boot mode but also alternative boot mode. Device supports high speed timing and dual data rate during boot.

Figure 5-1 embedded MultiMediaCard state diagram (boot mode)

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 5-2 embedded MultiMediaCard state diagram (alternative boot mode)

Table 5-5 Boot ack, boot data and initialization Time

Timing Factor	Value
Boot ACK Time	< 50 ms
Boot Data Time	< 1 sec
Initialization Time ¹	< 3 secs

Note:

1. The value for this initialization time is for such case which includes partition setting also. For details, please refer to INI_TIMEOUT_AP in Extended CSD Register of JESD84-B50-1.

Normal initialization time (without partition setting) is completed within 1sec

Field Firmware Upgrade (FFU)

Field Firmware Updates (FFU) is for customer's FW updating in field for those cases of debugging, enhancing and adding new features of FW itself. The host can download a new version of the firmware into the eMMC device by this mechanism and whole FFU process can happen without affecting any user/OS data, even in parallel with Host's performing other operations.

For additional information refer to JEDEC Standards No. JESD84-B50-1.

Cache

This device supports 128KB of volatile memory as an eMMC cache for performance improvement of both sequentialand random access. For additional information please refer to JESD84-B50 standard.

Packed Commands

This device supports packed commands feature of eMMC standard version 5.0 and allows the host to pack Read or Write commands into groups (of single type of operation) and transfer these to the device in a single transfer on the bus, which leads reducing overall bus overheads and thus, enables optimal system performance.

Please refer to JESD84-B50 for information details.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Se<mark>cure Delete</mark> Sanitize

The device supports Sanitize operation for removing data from the unmapped user address space in the device, physically. Device keeps the sanitize operation until one of the following events occurs, with keeping busy asserted,

- Sanitize operation is complete
- •HPI is used to abort the operation
- •Power failure
- Hardware reset

No data should exist in the unmapped host address space after the sanitize operation is completed.

Secure Erase

This device supports the optional Secure Erase command, which is for backward compatibility reasons, as well as standard erase command. Host will erase provided range of LBAs and ensure no older copies of this data exist in the flash with this command.

Please refer to JEDEC Standards No. JESD84-B50 for more information.

Secure Trim

This device supports Secure Trim command which is similar to the Secure Erase command but different in thatperforms a secure purge operation on write blocks instead of erase groups. This is for backward compatibility reasons.

The secure trim command is performed in two steps:

1) Mark the LBA range as candidate for erase.

2) Do Erase the marked address range and then, ensure no old copies are left within that range. .

For additional information refer to JEDEC Standards No. JESD84-B50.

High Priority Interrupt (HPI)

This device supports High Priority Interrupt and prevent problem of Host being stalled due to too much delayed Write operation by new paging request of operating system, by user. It will delay the request for new paging until currently going write operation is completed.

Please refer to JEDEC Standards No. JESD84-B50 for more information.

Device Health

This device supports Device Health Report feature which is featured to others in that separately report SLC type area and other area by each bytes of DEVICE_LIFE_TIME_EST_TYP_A[268] and DEVICE_LIFE_TIME_EST_TYP_A[269], respectively. It can be queried by standard MMC command for getting xtendedCSD structure. Please refer to below and JEDEC Standards No. JESD84-B50 for details.

DEVICE_LIFE_TIME_EST_TYP_A[268], The host may use it to query health information of SLC area.

DEVICE_LIFE_TIME_EST_TYP_B[269], The host may use it to query health information of other partition area.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Auto Power Saving Mode

This device supports Auto Power Saving Mode which can save power consumption definitely. Device will enter this mode if host does not issue any command during 1ms, after completion of previously issued command.

Any newly issued commands during this mode will be carried normally.

Table 5-6 Auto Power Saving Mode enter and exit

Mode	Enter Condition	Escape Condition
Auto Dowor Soving Modo	When previous operation which came from Host is completed	If Heat issues any command
Auto Power Saving Mode	and no com-mand is issued during a certain time.	IT HOST ISSUES ANY COMMAND

Table 5-7 Auto Power Saving Mode and Sleep Mode

Mode	Enter Condition	Escape Condition
NAND Power	ON	ON/OFF
GotoSleep Time	< 100ms	< 1ms

Enhanced Strobe

Supports Enhanced Strobe which is new feature of eMMC version 5.1 standard to synchronize CMD response. Host shall support this feature and it enables faster and more reliable operation.

For more information, please refer to JEDEC Standards No. JESD84-B50.

Performance

Table 5-8 Sustained Sequential Performance

Capacity (GB)	Sequential Read (MB/s)	Sequential Write (MB/s)
8	250	25

Note:

1. Test Condition: Bus width x8, HS400, 512KB data transfer, Packed Off, Cache On, w/o file system overhead.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

5.2 Register Value

Following sections are for describing all register value of eMMC device at its default. And these values here may be updated in later version without notice.

There are defined total six registers in this section: OCR, CID, CSD, EXT_CSD, RCA and DSR. All of them has its own commands corresponded and for details, please refer JEDEC Standards No. JESD84-B50 for details. The OCR, CID and CSD registers has information of device and content, while the RCA and DSR registers are for configuring parameters of device. For the EXT_CSD register, it contains both device specific information and actual configuration parameters.

OCR Register

The operation conditions register (OCR) contains: V_{CC} voltage profile of the device, access mode indication, status information bit. The status bit is set when the device finished its power up procedure. All eMMC devices shall have this register implemented.

Table 5-9 OCR Register

OCR bit	Vccq Voltage Window ²	Register Value	
[6:0]	Reserved	00 00000b	
[7]	1.70 ~ 1.95	1b	
[14:8]	2.0 ~ 2.6	000 0000b	
[23:15]	2.7 ~ 3.6	1 1111 1111b	
[28:24]	Reserved	0 0000Ь	
[20:20]	00b (byte mode) -[2GB		
[30.29]	Access Mode	10b (sector mode) -[*Higher than 2GB only]	
[31]	eMMC power up status bit (busy) ¹		

Notes:

1. This bit is set to LOW if the eMMC has not finished the power up routine.

2. The voltage for internal flash memory (Vcc) should be 2.7 ~ 3.6V regardless of OCR register value.

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

CID Register

The device Identification (CID) register is 128bits wide. It contains the device identification information used during the device identification phase (eMMC protocol). eMMC device shall have a unique identification number.

Users can define their own CID register and the CID contents will be programmed into the eMMC device when firmware fusing process. After the programming is complete, end users cannot change CID, unless the whole foundry production program is re-done. Users can install the new downloaded firmware into the device by using FFU (Field Firmware Update) mode.

Table 5-10 CID Register

Name	Field	Width	CID-slice	CID Value
Manufacturer ID	MID	8	[127:120]	0xAD
Reserved		6	[119:114]	-
Card/BGA	CBX	2	[113:112]	0x01
OEM/Application ID	OID	8	[111:104]	_
Product name	PNM	48	[103:56]	-
Product revision	PRV	8	[55:48]	-
Product serial number	PSN	32	[47:16]	_3
Manufacturing date	MDT	8	[15:8]	_1
CRC7 checksum	CRC	7	[7:1]	_1
not used, always '1'	_	1	[0:0]	_

Notes:

1.Tdescription are same as eMMC JEDEC standard.

2. PRV is composed of the revision count of controller and the revision count of F/W patch.

3. A 32 bits unsigned binary integer. (Random Number).

Product name table (In CID Register)

Table 5-11 Product name table

Part Number	Density	PKG
Fait Number	(GB)	Туре
CTB78GB11K1	8	11.5x13.0x1.0

RCA Register

The writable 16-bit relative device address (RCA) register carries the device address assigned by the host during the device identification. This address is used for the addressed host-device communication after the device identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all devices into the Stand-by State with CMD7.

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

CSD Register

The device Specific Data (CSD) register provides information on how to access the device contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register (entries marked by W or E) can be changed by CMD27.

The CSD register defines the behavior or of eMMC devices. The eMMC behavior is related to the controller design. The following table shows a typical CSD definition of CTB78GB11K1 based eMMC. If users need to add on more features, firmware or hardware modifications may be necessary.

Note that the register values are preliminary data and may be updated in a later version. And the updated value will be supported by specified application note later.

Name Field Bit Туре Slice Value Note 0x03 CSD structure CSD STRUCTURE 2 R [127:126] System specification version SPEC_VERS 4 R [125:122] 0x04 2 R Reserved [121:120] 8 Data read access-time TAAC R [119:112] 0x27 Data read access-time in CLK NSAC 8 R [111:104] 0x01 cycles (NSAC x 100) Max. bus clock frequency TRAN SPEED 8 R [103:96] 0x32 Device command classes 12 R 0x8F5 CCC [95:84] Max. read data block length READ BL LEN 4 R [83:80] 0x09 Partial blocks for read allowed READ BL PARTIAL R 0x00 1 [79:79] Write block misalignment WRITE BLK MISALIGN 1 R [78:78] 0x00 Read block misalignment READ BLK MISALIGN 1 R [77:77] 0x00 R DSR implemented DSR IMP 1 [76:76] 0x00 2 R Reserved [75:74] Device size C SIZE 12 R [73:62] 0xFFF Max read current@VCCQ min VCCQ R CURR MIN 3 R [61:59] 0x07 3 R Max read current@VCCQ max VCCQ R CURR MAX [58:56] 0x07 Max write current@VCCQ min VCCQ W CURR MIN 3 R [55:53] 0x07 3 R Max write current@VCCQ max [52:50] 0x07 VCCQ_W_CURR_MAX 3 R Device size multiplier C SIZE MULT [49:47] 0x07 R Erase group size ERASE GRP SIZE 5 [46:42] 0x1F Erase group size multiplier ERASE GRP MULT 5 R [41:37] 0x1F 0x0F Write protect group size WP_GRP_SIZE 5 R [36:32] 0x01 Write protect group enable WP GRP ENABLE 1 R [31:31] Manufacturer default ECC 2 R 0x00 DEFAULT ECC [30:29] 0x02 3 R Write speed factor **R2W FACTOR** [28:26]

Table 5-12 Typical CSD Register

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 5-12 Typical CSD Register (Continued)

Name	Field	Bit	Туре	Slice	Value	Note
Max. write data block length	WRITE_BL_LEN	4	R	[25:22]	0x09	
Partial blocks for write allowed	WRITE_BL_PARTIAL	1	R	[21:21]	0x00	
Reserved	-	4	R	[20:17]	_	
Content protection application	CONTENT_PROT_APP	1	R	[16:16]	0x00	
File format group	FILE_FORMAT_GRP	1	R/W	[15:15]	0x00	
Copy flag (OTP)	COPY	1	R/W	[14:14]	0x01	
Permanent write protection	PERM_WRITE_PROTECT	1	R/W	[13:13]	0x00	
Temporary write protection	TMP_WRITE_PROTECT	1	R/W/E	[12:12]	0x00	
File format	FILE_FORMAT	2	R/W	[11:10]	0x00	
ECC code	ECC	2	R/W/E	[9:8]	0x00	
CRC	CRC	7	R/W/E	[7:1]	_	
Not used, always '1'	_	1		[0:0]	_	

Note:

1. The type of the CSD Registry entries in the Table 4-12 is coded as follows.

R: Read only

W: One time programmable and not readable

R/W: One time programmable and readable

W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and not readable.

R/W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and readable.

R/W/C_P: Writable after value cleared by power failure and HW/rest assertion (the value not cleared by CMD0 reset) and readable.

R/W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and readable.

W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and not readable.

Extended CSD Register (EXT_CSD)

The Extended CSD register defines the additional behavior of eMMC devices due to limited CSD information. The following table shows a typical extended CSD definition of CTB78GB11K1 based eMMC. If users need to add on more features, firmware or hardware modifications may be necessary.

Notethat the register values are preliminary data and may be updated in a later version. And the updated value will be supported by specified application note later.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 5-13 Typical EXT_CSD Register												
Name	Field	Byte	Туре	Slice	Value	Note						
Properties Segment												
Reserved	-	6	_	[511:506]	-							
Extended security commands error	EXT_SECURITY_ERR	1	R	[505]	0x00							
Supported command sets	S_CMD_SET	1	R	[504]	0x01							
HPI features	HPI_FEATURES	1	R	[503]	0x01							
Background operations support	BKOPS_SUPPORT	1	R	[502]	0x01							
Max packed read commands	MAX_PACKED_READS	1	R	[501]	0x3F							
Max packed write commands	MAX_PACKED_WRITES	1	R	[500]	0x3F							
Data tag support	DATA_TAG_SUPPORT	1	R	[499]	0x01							
Tag unit size	TAG_UNIT_SIZE	1	R	[489]	0x08							
Tag resources size	TAG_RES_SIZE	1	R	[497]	0x00							
Context management capabilities	CONTEXT_CAPABILITIES	1	R	[496]	0x05							
Large unit size	LARGE_UNIT_SIZE_M1	1	R	[495]	0x07							
Extended partitions attribute support	EXT_SUPPORT	2	R	[494]	0x03							
Supported modes	SUPPORTED_MODES	1	R	[493]	0x01							
FFU features	FFU_FEATURES	1	R	[492]	0x00							
Operation codes timeout	OPERATION_CODE_TIMEOUT	1	R	[491]	0x10							
FFU Argument	FFU_ARG	4	R	[490:487]	0x00							
Barrier Support	BARRIER_SUPPORT	1	R	[486]	0x01							
Reserved	_	181	_	[485:309]	_							
CMD Queuing Support	CMDQ_SUPPORT	1	R	[308]	0x01							
CMD Queuing Depth	CMDQ_DEPTH	1	R	[307]	0x1F							
Reserved	_	1	_	[306]	_							
Number of FW sectors correctly programmed	NUMBER_OF_FW_ SECTOR S_CORRECTLY_ PROGRAM MED	4	R	[305:30]	0x00							
Vendor proprietary health report	VENDOR_PROPRIETARY_ HEALTH_REPORT	32	R	[301:270]	0x00							
Device life time estimation type B	DEVICE_LIFE_TIME_EST_TYP _B	1	R	[269]	0x01	Other area except EXT_CSD[268]						
Device life time estimation type A	DEVICE_LIFE_TIME_EST_TYP A	1	R	[268]	0x01	SLC type area						

XIN 🕸 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Name	Field	Byte	Туре	Slice	Value	Note
	Properties Segm	ent				
Pre EOL information	PRE_EOL_INFO	1	R	[267]	0x01	
Optimal read size	OPTIMAL_READ_SIZE	1	R	[266]	0x00	
Optimal write size	OPTIMAL_WRITE_SIZE	1	R	[265]	0x04	
Optimal trim unit size	OPTIMAL_TRIM_UNIT_SIZE	1	R	[264]	0x03	
Device version	DEVICE_VERSION	2	R	[263:262]	0x00	
Firmware version	FIRMWARE_VERSION	8	R	[261:254]	\rightarrow	TBD
Power class for 200MHz, DDR at 3.6V	PWR_CL_DDR_200_360	1	R	[253]	0x77	
Cache size	CACHE_SIZE	4	R	[252:249]	\rightarrow	0x00000400
Generic CMD6 timeout	GENERIC_CMD6_TIME	1	R	[248]	0x0A	
Power off notification(long) timeout	POWER_OFF_LONG_TIME	1	R	[247]	0x3C	
Background operations status	BKOPS_STATUS	1	R	[246]	0x00	
Number of correctlyprogrammed sectors	CORRECTLY_PRG_SECTORS _NUM	4	R	[245:242]	\rightarrow	0x0000000
1 st initialization time after partitioning	INI_TIMEOUT_AP	1	R	[241]	0x1E	
Cache Flushing Policy	CACHE_FLUSH_POLICY	1	R	[240]	0x01	
Power class for 52MHz, DDR at 3.6V	PWR_CL_DDR_52_360	1	R	[239]	0x77	
Power class for 52 MHz, DDR at1.95V	PWR_CL_DDR_52_195	1	R	[238]	0x77	
Power class for 200 MHz at 1.95V	PWR_CL_200_195	1	R	[237]	0x77	
Power class for 200 MHz, at 1.3V	PWR_CL_200_130	1	R	[236]	0x00	
Minimum write performance for 8 bit at 52 MHz in DDR mode	MIN_PERF_DDR_W_8_52	1	R	[235]	0x00	
Minimum read performance for 8 bit at 52 MHz in DDR mode	MIN_PERF_DDR_R_8_52	1	R	[234]	0x00	
Reserved	_	1	—	[233]	0x00	
TRIM multiplier	TRIM_MULT	1	R	[232]	0x02	
Secure feature support	SEC_FEATURE_SUPPORT	1	R	[231]	0x55	
Secure erase multiplier	SEC_ERASE_MULT		R	[230]	0x0A	
Secure trim multiplier	SEC_TRIM_MULT		R	[229]	0x0A	
Boot information	BOOT_INFO	1	R	[228]	0x07	
Reserved	_	1	_	[227]	_	
Boot partition size	BOOT_SIZE_MULTI	1	R	[226]	0x20	

XIN 🕱 CUN

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Name	Field		Туре	Slice	Value	Note
	ent		_			
Access size	ACC_SIZE	1	R	[225]	0x06	
High-capacity erase unit siz	HC_ERASE_GRP_SIZE	1	R	[224]	0x01	
High-capacity erase timeout	ERASE_TIMEOUT_MULT	1	R	[223]	0x02	
Reliable write sector count	REL_WR_SEC_C	1	R	[222]	0x01	
High-capacity write protect group size	HC_WP_GRP_SIZE	1	R	[221]	0x10	
Sleep current (V _{CC})	S_C_VCC	1	R	[220]	0x07	
Sleep current (V _{CCQ})	S_C_VCCQ	1	R	[219]	0x07	
Product state awareness timeout	PRODUCTION_STATE_ AWARENESS_TIMEOUT	1	R	[218]	0x0A	
Sleep/awake timeout	S_A_TIMEOUT	1	R	[217]	0x12	
Sleep notification timeout	SLEEP_NOTIFICATION_TIME	1	R	[216]	0x10	
Sector count	SEC_COUNT	4	R	[215:212]	\rightarrow	8GB (0x00E90000)
Secure Write Protect Information	SECURE_WP_INFO	1	R	[211]	0x01	
Minimum write performance for 8bit at 52MHz	MIN_PERF_W_8_52	1	R	[210]	0x00	
Minimum read performance for 8bit at 52MHz	MIN_PERF_R_8_52	1	R	[209]	0x00	
Minimum write performance for 8bit at 26MHz, for 4bit at 52MHz	MIN_PERF_W_8_26_4_52	1	R	[208]	0x00	
Minimum read performance for 8bit at 26MHz, for 4bit at 52MHz	MIN_PERF_R_8_26_4_52	1	R	[207]	0x00	
Minimum write performance for 4bit at 26MHz	MIN_PERF_W_4_26	1	R	[206]	0x00	
Minimum read performance for 4bit at 26MHz	MIN_PERFR_4_26	1	R	[205]	0x00	
Reserved	_	1	-	[204]	_	
Power class or 26 MHz at 3.6V 1 R	PWR_CL_26_360	1	R	[203]	0x77	
Power class for 52 MHz at 3.6V 1 R	PWR_CL_52_360		R	[202]	0x77	
Power class for 26 MHz at 1.95V 1 R	PWR_CL_26_195		R	[201]	0x77	
Power class for 52 MHz at 1.95V 1 R	PWR_CL_52_195		R	[200]	0x77	
Partition switching timing	PARTITION_SWITCH_TIME	1	R	[199]	0x01	
Out-of-interrupt busy timing	OUT_OF_INTERRUPT_TIME	1	R	[198]	0x64	

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Name	Field	Byte	Туре	Slice	Value	Note
	Properties Segn	nent				
I/O Driver Strength CSD structure version	DRIVER_STRENGTH	1	R	[197]	0x1F	
Device type	DEVICE_TYPE	1	R	[196]	0x57	
Reserved	-	1	_	[195]	-	
CSD structure version	CSD_STRUCTURE	1	R	[194]	0x02	
Reserved	-	1	-	[193]	-	
Extended CSD revision	EXT_CSD_REV	1	R	[192]	0x08	
	Modes Segme	ent				
Command set	CMD_SET	1	R/W/E_P	[191]	0x00	
Reserved	_	1	_	[190]	-	
Command set revision	CMD_SET_REV	1	R	[189]	0x00	
Reserved	_	1	_	[188]	-	
Power class	POWER_CLASS	1	R/W/E_P	[187]	0x00	
Reserved	_	1	_	[186]	-	
High speed interface timing	HS_TIMING	1	R/W/E_P	[185]	0x01	
Strobe Support	STROBE_SUPPORT -	1	-R	[184]	0x01	
Bus width mode	BUS_WIDTH	1	W/E_P	[183]	0x00	
Reserved	_	1	_	[182]	-	
Erased memory content	ERASED_MEM_CONT	1	R	[181]	0x00	
Reserved	_	1	-	[180]	_	
Partition configuration	PARTITION_CONFI	1	R/W/E & R/W/E_P	[179]	0x00	
Boot config protection	BOOT_CONFIG_PROT	1	R/W &R/W/C_P	[178]	0x00	
Boot bus conditions	BOOT_BUS_CONDITIONS	1	R/W/E	[177]	0x00	
Reserved	-	1	-	[176]	-	
High-density erase group definition	ERASE_GROUP_DEF	1	R/W/E_P	[175]	0x00	
Boot write protection status registers	BOOT_WP_STATU	1	R	[174]	0x00	
Boot area write protection register	BOOT_WP	1	R/W & R/W/C_P	[173]	0x00	
Reserved	-	1	-	[172]	_	
User area write protection register	USER_WP		R/W, R/W/C_P & R/W/E_P	[171]	0x00	
Reserved		1	_	[170]	_	

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Name	Field	Byte	Туре	Slice	Value	Note		
Modes Segment								
FW configuration	FW_CONFIG	1	R/W	[169]	0x00			
RPMB size	RPMB_SIZE_MULT	1	R	[168]	0x20			
Write reliability setting register	WR_REL_SET	1	R/W	[167]	0x1F			
Write reliability parameter register	WR_REL_PARAM	1	R	[166]	0x14			
Start sanitize operation	SANITIZE_START	1	W/E_P	[165]	0x00			
Manually start background operations	BKOPS_START	1	W/E_P	[164]	0x00			
Enable background operations handshake	BKOPS_EN	1	R/W	[163]	0x00			
H/W reset function	RST_n_FUNCTION	1	R/W	[162]	0x00			
HPI management	HPI_MGMT	1	R/W/E_P	[161]	0x00			
Partitioning support	PARTITIONING_SUPPORT	1	R	[160]	0x07			
Max enhanced area size	MAX_ENH_SIZE_MULT	3	R	[159:157]	0xEC	8GB (0x0001D2)		
Partitions attribute	PARTITIONS_ATTRIBUTE	1	R/W	[156]	0x00			
Partitioning setting	PARTITION_SETTING_ COMPLETED	1	R/W	[155]	0x00			
General purpose partition size	GP_SIZE_MULT	12	R/W	[154:143]	0x00			
Enhanced user data area size	ENH_SIZE_MULT	3	R/W	[142:140]	0x00			
Enhanced user data start address	ENH-START_ADDR	4	R/W	[139:136]	0x00			
Reserved	_	1	-	[135]	-			
Bad block management mode	SEC_BAD_BLK_MGMNT	1	R/W	[134]	0x00			
Production state awareness	PRODUCTION_ STATE_AWARENESS	1	R/W/E	[133]	0x00			
Package case temperature is controlled	TCASE_SUPPORT	1	W/E_P	[132]	0x00			
Periodic wake-up	PERIODIC_WAKEUP	1	R/W/E	[131]	0x00			
Program CID/CSD in DDR mode support	PROGRAM_CID_CSD_ DDR_SUPPORT	1	R	[130]	0x01			
Reserved	-	2	_	[129:128]	-			
Vendor Specific Fields	VENDOR_SPECIFIC_FIELD	64		[127:64]	0x00			
Native sector size	NATIVE_SECTOR_SIZE	1	R	[63]	0x00			
Sector size emulation	USE_NATIVE_SECTOR	1	R/W	[62]	0x00			
Sector size	DATA_SECTOR_SIZE	1	R	[61]	0x00			
1 st initialization after disabling sector size emulation	INI_TIMEOUT_EMU	1	R	[60]	0x00			

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Table 5-13 Typical EXT_CSD Register (Continued)

Name	Field		Туре	Slice	Value	Note
	Modes Segme	nt	1			
Class 6 commands control	CLASS_6_CTRL	1	R/W/E_P	[59]	0x00	
Number of addressed group to be released	DYNCAP_NEEDED	1	R	[58]	0x00	
Exception events control	EXCEPTION_EVENTS_CTRL	2	R/W/E_P	[57:56]	0x00	
Exception events status	EXCEPTION_EVENTS_ STATUS	2	R	[55:54]	0x00	
Extended partitions attribute	EXT_PARTITIONS_ATTRIBUTE	2	R/W	[53:52]	0x00	
Context configuration	CONTEXT_CONF	15	R/W/E_P	[51:37]	0x00	
Packed command status	PACKED_COMMAND_STATUS	1	R	[36]	0x00	
Packed command failure index	PACKED_FAILURE_INDEX	1	R	[35]	0x00	
Power off notification	POWER_OFF_NOTIFICATION	1	R/W/E_P	[34]	0x00	
Control to turn the cache ON/OF	CACHE_CTRL	1	R/W/E_P	[33]	0x00	
Flushing of the cache	FLUSH_CACHE	1	W/E_P	[32]	0x00	
Reserved	-	1	_	[31]	-	
Mode config	MODE_CONFIG	1	R/W/E_P	[30]		
Mode operation codes	MODE_OPERATION_CODES	1	W/E_P	[29]	0x00	
Reserved	_	2	_	[28:27]	-	
FFU status	FFU_STATUS	1	R	[26]	0x00	
Pre loading data size	PRE_LOADING_DATA_SIZE	4	R/W/E_P	[25:22]	\rightarrow	8GB (003B0000)
Max pre loading data size	MAX_PRE_LOADING_ DATA_SIZE	4	R	[21:18]	\rightarrow	8GB (003B0000)
Product state awareness enablement	PRODUCT_STATE_ AWARENESS_ENABLEMENT	1	R/W/E & R	[17]	0x03	
Secure removal type	SECURE_REMOVAL_TYPE	1	R/W/E &R	[16]	0x09	
Command Queue Mode Enable	CMDQ_MODE_EN	1	R/W/E_P	[15]	0x00	
Reserved	-	- 15 - [14:0]		_		

Note:

1. The following is for the type of the EXT_CSD Register entries in the Table 5-14.

R: Read only.

W: One time programmable and not readable.

R/W: One time programmable and readable.

W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and not readable.

R/W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and readable.

R/W/C_P: Writable after value cleared by power failure and HW/reset assertion (the value not cleared by CMD0 reset) and readable.

R/W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and readable. W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and not readable.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

5.3 AC Parameter Timing Parameter

Table 5-14 Timing Parameter

Timing Para	Max. Value	
Initialization Time (tINUT)	Normal 1)	1 sec
	After partition setting ²⁾	3 sec
Read Time	eout	100 ms
Write Time	eout	350 ms
Erase Time	20 ms	
Force Erase T	3 min	
Secure Erase	Timeout	6 sec
Secure Trim step	6 sec	
Trim Time	600 ms	
Partition Switching Tin	10 ms	
Power Off Notification	100 ms	
Power Off Notification	600 ms	

Notes:

1.Normal Initialization Time without partition setting.

2.For the Initialization Time after partition setting, refer to INI_TIMEOUT_AP in EXT_CSD register.

3.All those Timeout Values specified in the above Table are only for testing purposes under specific test case only and it can vary in real cases. Also, it may be affected may vary due to user environment.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕱 CUN

Bus Timing Specification in HS400 mode HS400 Device Input Timing

Figure 5-3 HS400 Device Input Timing Diagram

Notes:

1.t_{ISU} and t_{IH} are measured at $V_{IL (max)}$ and $V_{IH (min)}$.

2.VIH denotes VIH (min) and VIL denotes VIL (max).

Table 5-15 HS400 Device Input Timing

Paramter	Symbol	Min	Max	Unit	Remark					
Input CLK										
Cycle time datatransfer mode	t PERIOD	5	_	ns	200MHz(Max), betweenwith respect to V _T .					
Slew rate	SR	1.125	_	V/ns						
Duty cycle distortion	tскосо	0.0	0.3	ns						
Minimum pulse width	t _{CKMPW}	2.2	_	ns						
	Input DAT (referenced to CLK)									
Input set-up time	t _{ıs∪ddr}	0.4	-	ns						
Input hold time	tıHddr	0.4	_	ns						
Slew rate	SR	1.125	_	V/ns						

XIN 🕸 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

HS400 Device Onput Timing

Data Strobe is used to read data (data read and CRC status response read) in HS400 mode. The device output value of Data Strobe is "High-Z" when the device is not in outputting data(data read, CRC status response). Data Strobe is toggled only during data read period.

Figure 5-4 HS400 Device Output Timing Diagram

Note:

1.Voh denotes $V_{OH\,(min)}$ and V_{OL} denotes $V_{OL\,(max)}$

Table 5-16 HS400 DeviceOutput Timing

Paramter	Symbol	Min	Max	Unit	Remark					
Data Strobe										
Cycle time datatransfer mode	t PERIOD	5	_	ns	200MHz(Max), betweenwith respect to V⊤.					
Slew rate	SR	1.125	_	V/ns						
Duty cycle distortion	tскосо	0.0	0.2	ns						
Minimum pulse width	t _{CKMPW}	2.0	_	ns						
Read pre-amble	t _{RPRE}	0.4	_	t PERIOD						
Read post-amble	t RPST	0.4	_	t PERIOD						
	Output DAT (referenced to Data Strobe)									
Output skew	t _{RQ}	-	0.4	ns						
Output hold skew	t _{RQH}	_	0.4	ns						
Slew rate	SR	1.125	_	V/ns						

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

Figure 5-5 Bus Signal Levels

Table 5-17 Bus Signal Levels

Paramter	Symbol	Min	Мах	Unit	Remark					
Open-drain mode										
Output HIGH voltage	Vон	V _{CCQ} - 0.2	_	V						
Output LOW voltage	Vol	_	0.3	V	Io∟ = TBD					
		Push-pull m	ode (High-voltage	eMMC)						
Output HIGH voltage	Vон	0.75 x Vccq	_	V	Iон = –100uA @ Vссо min					
Output LOW voltage	Vol	_	0.125 x Vccq	V	I _{OL} = 100uA @ V _{CCQ} min					
Input HIGH voltage	V _{IH}	$0.625 \times V_{CCQ}$	V _{CCQ} + 0.3	V						
Input LOW voltage	VIL	$V_{\text{SS}} - 0.3$	0.25 x V _{CCQ}	V						

Note:

1. Because VOH depends on external resistance value (including outside the package), this value does not apply as device specification. Host is responsible to choose the external pull-up and open drain resistance value to meet VOH Min value.

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

5.4 DC Parameter Power Consumption

XIN 🕱 CUN

Table 5-18 Active Power Consumption during operation

Density (GB)	NAND Type (MLC)	CTRL (Max RMSmA)	NAND (Max RMS,mA)
8	64Gb x1	120	120

Notes:

1.Power Measurement conditions: Bus configuration =x8 @200MHz DDR.

2.Typical value is measured at Vcc/Vccq=3.3V, TA=25°C. Not 100% tested.

3. The measurement for max RMS current is the average RMS current consumption over a period of 100ms.

Table 5-19 Standby Power Consumption in auto power saving mode and standby state

Donoity (CP)		CTRL (Ave	. RMS, uA)	NAND (Max RMS,mA)	
Density (GB)	NAND Type (MICC)	25°C (Typ)	85°C	25°C (Typ)	85°C
8	64Gb x1	130	800	40	50

Notes:

1.Power Measurement conditions: Bus configuration =x8, No CLK.

2.Typical value is measured at Vcc/Vccq=3.3V, TA=25°C. Not 100% tested.

Table 5-20 Sleep Power Consumption in Sleep State

Donoity (CP)		CTRL	. (uA)		
Density (GB)	NAND Type (MLC)	25°C (Typ)	85°C	NAND (UA)	
8	64Gb x1	130	800	TBD ³	

Notes:

1.Power Measurement conditions: Bus configuration =x8, No CLK.

2.Typical value is measured at V_{CC}/V_{CCQ}=3.3V, TA=25°C. Not 100% tested.

3.In auto power saving mode, NAND power can not be turned off, However in sleep mode NAND power can be turned off. If NAND power is alive, NAND power is same with that of the Standby state.

Supply Voltage

Table 5-21 Supply Voltage

Symbol	Min (V)	Max (V)
Vccq	2.7	3.6
Vcc	2.7	3.6
Vss	-0.5	0.5

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Bus Signal Line Load

The total capacitance CL of each line of the eMMC bus is the sum of the bus master capacitance CHOST, the bus capacitance CBUS itself and the capacitance CDEVICE of the eMMC connected to this line:

$C_L = C_{HOST} + C_{BUS} + C_{DEVICE}$

The sum of the host and bus capacitances should be under 20pF.

Table 5-22 Bus Signal Line Load

Paramter	Symbol	Min	Тур	Max	Unit	Remark
Pull-up resistance for CMD	R _{CMD}	4.7		100	KOhm	to prevent bus floating
Pull-up resistance for DAT0-DAT7	Rdat	10		100	KOhm	to prevent bus floating
Internal pull up resistance DAT1-DAT7	R _{int}	10		150	KOhm	to prevent unconnected lines floating
Single Device capacitance	CDEVICE			6	pF	
Maximum signal line inductance				16	nHV	f _{PP} <= 52 MHz

Table 5-23 Capacitance and Resistance for HS400 mode

Paramter	Symbol	Min	Тур	Мах	Unit	Remark
Bus signal line capacitance	CL			13	pF	Single Device
Single Device capacitance	CDEVICE			6	pF	
Pull-down resistance for Data Strobe	R _{Data} Strobe	10		100	KOhm	

5.5 Power Delivery And Capacitor Specifications

Power Domains

Xincun 8GB eMMC has three power domains assigned to V_{CCQ} , V_{CC} and V_{DDI_M} , as shown below.

Table 5-24 Power Domains

Symbol	Power Domain	Comments
Vccq	Host Interface	
Vcc	Memory	
Vddi_m	Internal	V _{DDI_M} is the internal regulator connection to an external decoupling capacitor.

Capacitor Connection Guidelines

It is recommended to place the following capacitors on V_{CC} V_{CCQ} domains:

• C_1/C_3= 4.7uF

♦E.g.:

Manufacturer	Manufacturer P/N
MURATA	GRM185R60J475ME15D
TAIYO YUDEN	JMK107BJ475MK-T

8GB eMMC+8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

XIN 🕸 CUN

• C_2/C_4/C_6= 0.1uF • E.a.:

Manufacturer	Manufacturer P/N
MURATA	GRM155R71A104KA01D
KYOCERA	CM05X5R104K06AH

For VCC (3.3V), it is recommended to place:

• C_5(VCC) = 10uF

♦E.g.:

Manufacturer	Manufacturer P/N
TAIYO YUDEN	JMK107ABJ106MAHT
PANASONIC	ECJ-1VB0J106M
SAMSUNG	CL10A106MQ8NNNC

Capacitors Type:

- SMT-Ceramic
- X5R
- 6.3V
- Min height 0.55mm
- Foot Print: 0402 or above

Suggested capacitors should be located as close to the supply ball as possible and they will eliminate as much trace inductance effects as possible and give cleaner voltage supply to device. Also, they reduce lead length and eliminate noise coupling onto through-hole components, which may have effects of antenna.

Make all of the power (high current) traces as short, direct, and thick as possible and put all capacitors as close to each other as possible, for reducing EMI radiated by the power traces due to the high switching currents through them. Again, it shall also reduce lead inductance and resistance as well and thus, noise spikes, ringings, and resistive losses which cause voltage errors.

For the ground of these capacitors, they should be connected close together directly to a ground plane and it is also recommended to have a ground plane on both sides of the PCB, to reduce noise by eliminating ground loop errors as well.

The loop inductance per capacitor shall not exceed 3nH (both on V_{CC}/V_{CCQ}& V_{SS} loops).

Multiple via connections are recommended per each capacitor pad.

Signal Traces:

- Data, CMD, CLK & RCLK bus trace length mismatch should be minimal (up to +/-1mm).
- Traces should be 50ohm controlled impedance.

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

Figure 5-25 Recommended Power Domain Connections

	1234	56	7891	0111213	1415161	1718
Α	0000	000	000	С	000	00
В	0 0 0	000	000	С	000	0
Ğ	00		000	C	0000	
D.	00	0	000	C	000	
Ę						
r C	0.0					
H				C	0000	
ji –	00		000	C		
Ň	000	000	000	Č		0 0
L			000	ОC	0000	Q 00
М	00	000	000	ОC	000	00
N	00	000	000	00	0000	9 IO O
P	~ ~ ~	~ ~ ~	000		0000	
Ř						
4						0
U.						
V			000	C		
VV				C	0000	
ΔΔ	00	000	000	С	0000	
ÂΒ	00	000	000	C	000	
AC	0 00	000	000	С	000	0
AD	0000	000	000	С	000	00
					C5	C2
						III
				VSS	VSS	VSS

Paramter	Symbol	Unit	Value
V _{DDI_M}	C1 + C2	uF	4.7 + 0.1
Vccq	C3 + C4	uF	4.7 + 0.1
Vcc	C5 + C6	uF	10 + 0.1

Note:

Coupling capacitor should be connected with V_{DD} and V_{SS} as closely as possible.
XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM

(32M x 8-Bank x 32-bit (2 channels x 16 I/O))

6. PACKAGE DIMENSION (254 Ball FBGA, 11.5x13x1.0mm)

XIN 🕱 CUN

XCBL4NVAM-QSNTF

8GB eMMC+ 8Gb LPDDR4 SDRAM (32M x 8-Bank x 32-bit (2 channels x 16 I/O))

7. PART NUMBER LOGIC

